Home
Class 12
MATHS
Consider two function y=f(x) and y=g(x) ...

Consider two function `y=f(x) and y=g(x)` defined as
`f(x)={{:(ax^(2)+b,,0lexle1),(bx+2b,,1ltxle3),((a-1)x+2c-3,,3ltxle4):}`
`and" "g(x)={{:(cx+d,,0lexle2),(ax+3-c,,2ltxlt3),(x^(2)+b+1,,3gexle4):}`
Let f be differentiable at x = 1 and g(x) be continuous at x = 3. If the roots of the quadratic equation `x^(2)+(a+b+c)alphax+49(k+kalpha)=0` are real distinct for all values of `alpha` then possible values of k will be

A

`k in (-1,0)`

B

`k in (oo,0)`

C

`k in (1,5)`

D

`kin (-1,1)`

Text Solution

Verified by Experts

The correct Answer is:
A

Given two functions : `f(X)={{:(ax^(2)+b,,0lexle1),(bx+2b,, 1ltxle3),((a-1)x+2x-3,,3ltxle4):}`
and `g(x)={{:(cx+d,, 0le xle2),(ax+3-c,,2ltxlt3),(x^(2)+b+1,,xlexle4):}`
Condition for continuity of `f(x):f(1^(-))=f(1)=f(1^(+))and f(3^(-))=f(3)=f(3^(+))`
`rArr" "a+b=3b and 5b=3a+2c-6`
`rArr" "a=2b and c=3-(b)/(2)`
condition for continuity of g(x),
`g(2)=g(2^(-))=g(2^(+))and g(3^(-))=g(3)=g(3^(+))`
`rArr" "2c+d=2a+3-c and 3a+3 -c =10+b`
`rArr" "3c+d-2a=3 and b+c -3a =-7`
Also `f'(x)={{:(2ax,,0ltxlt1),(b,,1ltxlt3),(a-1,,3ltxlt4):}andg'(x)={{:(c,,0ltxlt2),(a,,2ltxlt3),(2x,,3ltxlt4):}`
f is differentiable at x = 1 and g(x) is continues at x = 3.
i.e. a = 2v and 2a = b
Also `3a+3-c=10+b`
`rArr" "a=b=0 and c=-7`
`x^(2)-7alphax+49k (1+alpha)=0` has real and distinct roots for `AA alpha in R.`
`rArr" "49alpha^(2)-4(49k)(1+alpha)gt 0 AA alpha in R`
`rArr" "alpha^(2)-4kalpha-4k gt 0 AA alpha in R`
`rArr" "16k^(2)+16klt0`
`rArr" "k(k+1)lt0`
`" "kin (-1,0)`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    CENGAGE|Exercise Question Bank|1 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    CENGAGE|Exercise Multiple Correct Answer Type|9 Videos
  • CONIC SECTIONS

    CENGAGE|Exercise Solved Examples And Exercises|87 Videos
  • COORDINATE SYSTEM

    CENGAGE|Exercise Multiple Correct Answers Type|2 Videos

Similar Questions

Explore conceptually related problems

Consider two function y=f(x) and y=g(x) defined as f(x)={{:(ax^(2)+b,,0lexle1),(bx+2b,,1ltxle3),((a-1)x+2c-3,,3ltxle4):} and" "g(x)={{:(cx+d,,0lexle2),(ax+3-c,,2ltxlt3),(x^(2)+b+1,,3gexle4):} lim_(xrarr2) (f(x))/(|g(x)|+1) exists and f is differentiable at x = 1. The value of limit will be

If f(x)={{:(x",",0lexle1),(2-e^(x-1)",",1ltxle2),(x-e",",2ltxle3):} and g'(x)=f(x), x in [1,3] , then

Knowledge Check

  • Let the function f be defined f(x)={:{(3x,0lexle1),(-3x+5,1ltxle2):} then............

    A
    `lim_(x to 1) f(x)=1`
    B
    `lim_(x to 1) f(x)=3`
    C
    `lim_(x to 1) f(x)=2`
    D
    `lim_(x to 1) f(x)=` does not exist
  • Let the function f be defined by f(x)={(3x0lexle1),(-3x+51ltxle2):} , then:

    A
    `lim_(xrarr1)f(x)=1`
    B
    `lim_(xrarr1)f(x)=3`
    C
    `lim_(xrarr1)f(x)=2`
    D
    `lim_(xrarr1)f(x)` does not exist
  • Similar Questions

    Explore conceptually related problems

    Let the function f(x) be defined as follows: f(x)={x^(3)+x^(2)-10x,-1lexle0 cosx,0lexlepi//2 1+sin x, pi//2 lexlepi

    If the function f is defined by f(x)={(x+2," if" xgt1), (2" if" -1lexle1 ), (x-1 " if" -3ltxlt-1):} find the values of f(0)

    If the function f is defined by f(x)={(x+2," if" xgt1), (2" if" -1lexle1 ), (x-1 " if" -3ltxlt-1):} find the values of f(3)

    If the function f is defined by f(x)={(x+2," if" xgt1), (2" if" -1lexle1 ), (x-1 " if" -3ltxlt-1):} find the values of f(-1.5)

    If the quadratic equations 3 x^(2)+a x+1=0 and 2 x^(2)+b x+1=0 have a common root, then the value of the expression 5 a b-2 a^(2)-3 b^(2) is

    if the function f(x)=AX-B X =2 is continuous at x=1 and discontinuous at x=2 find the value of A and B