Home
Class 12
MATHS
Let 0ltaltbltpi/2. \ If \ f(x)=|[tanx,ta...

Let `0ltaltbltpi/2. \ If \ f(x)=|[tanx,tana,tanb],[sinx,sina,sinb],[cosx,cosa,cosb]|`, then find the minimum possible number of roots of `f^(prime)(x)=0` in (a , b)

Text Solution

Verified by Experts

The correct Answer is:
one root
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • APPLICATION OF DERIVATIVES

    CENGAGE|Exercise Exercise 5.8|2 Videos
  • APPLICATION OF DERIVATIVES

    CENGAGE|Exercise Exercise (Single)|48 Videos
  • APPLICATION OF DERIVATIVES

    CENGAGE|Exercise Exercise 5.6|2 Videos
  • 3D COORDINATION SYSTEM

    CENGAGE|Exercise DPP 3.1|11 Videos
  • APPLICATION OF INTEGRALS

    CENGAGE|Exercise Solved Examples And Exercises|17 Videos

Similar Questions

Explore conceptually related problems

Find the minimum value of the function f(x)=(1+sinx)(1+cosx),AAx inR .

Let f(x) = |(2cos^2x, sin2x, -sinx), (sin2x, 2 sin^2x, cosx), (sinx, -cosx,0)| , then the value of int_0^(pi//2){f(x) + f'(x)} dx is

Let f(x)=sinx+cosx+tanx+sin^(-1)x+cos^(-1)x+tan^(-1)xdot Then find the maximum and minimum values of f(x)dot

Let f(x)=2x(2-x), 0 le x le 2 . Then find the number of solutions of f(f(f(x)))= (x)/(2) .

Let f(x0 be a non-constant thrice differentiable function defined on (-oo,oo) such that f(x)=f(6-x)a n df^(prime)(0)=0=f^(prime)(x)^2=f(5)dot If n is the minimum number of roots of (f^(prime)(x)^2+f^(prime)(x)f^(x)=0 in the interval [0,6], then the value of n/2 is___

Consider the polynomial f(x)=a x^2+b x+cdot If f(0),f(2)=2, then the minimum value of int_0^2|f^(prime)(x)dxi s___

Let f(x)=|2cos^2xsin2x-sinxsin2x2sin^2xcosxsinx-cosx0| . Then the value of int_0^(pi//2)[f(x)+f^(prime)(x)]dx is a. pi b. pi//2 c. 2pi d. 3pi//2

Let f: R->R be a continuous onto function satisfying f(x)+f(-x)=0AAx in Rdot If f(-3)=2a n df(5)=4in[-5,5], then the minimum number of roots of the equation f(x)=0 is

If F(x)=[(cosx,-sinx,0),(sinx,cosx,0),(0,0,1)] , show that F(x) F(y)=F(x+y) .

Let f(x) be differentiable function and g(x) be twice differentiable function. Zeros of f(x),g^(prime)(x) be a , b , respectively, (a