Home
Class 12
MATHS
If Lim(x rarr 0) (1-cosx)/(e^(ax)-bx-1) ...

If `Lim_(x rarr 0) (1-cosx)/(e^(ax)-bx-1)` exist and is equal to 1, then `(a^(2) + b^(2))` equals

Text Solution

Verified by Experts

The correct Answer is:
2
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • LIMITS

    CENGAGE|Exercise Comprehension Type|4 Videos
  • JEE 2019

    CENGAGE|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

If lim_(x rarr 0) (k+cos lx)/x^(2) exists and has the value equal to -4 then find l^(2)

lim_(xto0)(1-cosx)/x^(2)

Knowledge Check

  • lim_(x rarr 0) (sqrt(1 -cos 2x))/(x)

    A
    0
    B
    1
    C
    `sqrt(2)`
    D
    does not exist
  • lim_(x rarr 0)(e^(sin x)-1)/(x) =

    A
    1
    B
    e
    C
    `(1)/(e)`
    D
    0
  • ' lim_ (x to 0) (a^(x)-b^(x))/(e^(x)-1) is equal to

    A
    `"log"(a)/(b)`
    B
    `"log"(b)/(a)`
    C
    log ab
    D
    loga+b
  • Similar Questions

    Explore conceptually related problems

    If lim_(xto0) (1-cosx)/(e^(ax)-bx-1)=2 then find the values of a and b.

    The value of lim_(x rarr 0) (1-cos2x)/(e^(x^(2))-e^(x)+x) is

    lim_(xto0) ((1-cos2x)(3+cosx))/(xtan4x) is equal to

    Find lim_(x rarr 0)[(1+x)^5 -1]/x

    If Lim_(x rarr 0) (a sinx + bxe^(x)+3x^(2))/(sin x-2x+tanx) exists and has value equal to L, then the value of (a+L)/b is equal to