Home
Class 12
MATHS
Let i=inta^b(x^4-2x^2)dx for (a,b) which...

Let `i=int_a^b(x^4-2x^2)dx` for `(a,b)` which given integration is minimum `(bgt0)` (a) `(sqrt2,-sqrt2)` (b) `(0,sqrt2)` (c) `(-sqrt2,sqrt2)` (d) `(sqrt2,0)`

A

`(-sqrt(2),0)`

B

`(0,sqrt(2))`

C

`(sqrt(2),-sqrt(2))`

D

`(-sqrt(2),sqrt(2))`

Text Solution

Verified by Experts

The correct Answer is:
D

We have , I `=int_(a)^(b)(x^(4)-2x^(2))dx`
Let `f(x)=x^(4)-2x^(2)=x^(2)(x^(2)-2)`
` =x^(2)(x-sqrt(2))(x+sqrt(2))`
Graph ` y=f(x)=x^(4)-2x^(2)` is

Note that the definite integral `int_(a)^(b)(x^(4)-2x^(2)) dx` represent the area bounded by ` y= f(x),x =` a , b and the X - axis.
But between `x=-sqrt(2)andx=sqrt(2),f(x)` lies below the X - axis and so value definite integral will be negative. Also , as long as f(x) lie below the X - axis , the value of definite integral will be minimum.
`:.(a.b)=(-sqrt(2),sqrt(2)` for minimum of I.
Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

The minimum value of (x^4+y^4+z^2)/(x y z) for positive real numbers x ,y ,z is (a) sqrt(2) (b) 2sqrt(2) (c) 4sqrt(2) (d) 8sqrt(2)

Prove that sin^(-1). ((x + sqrt(1 - x^(2))/(sqrt2)) = sin^(-1) x + (pi)/(4) , where - (1)/(sqrt2) lt x lt(1)/(sqrt2)

Which of the following is the value of sin 27^0-cos 27^0? (a) -(sqrt(3-sqrt(5)))/2 (b) (sqrt(5-sqrt(5)))/2 (c) -(sqrt(5)-1)/(2sqrt(2)) (d) none of these

The incenter of the triangle with vertices (1,sqrt(3)),(0,0), and (2,0) is (a) (1,(sqrt(3))/2) (b) (2/3,1/(sqrt(3))) (c) (2/3,(sqrt(3))/2) (d) (1,1/(sqrt(3)))

The value of the definite integral int_0^(pi/2)sqrt(tanx)dx is sqrt(2)pi (b) pi/(sqrt(2)) 2sqrt(2)pi (d) pi/(2sqrt(2))

The value of the definite integral int_0^(pi/2)sqrt(tanx)dx is sqrt(2)pi (b) pi/(sqrt(2)) 2sqrt(2)pi (d) pi/(2sqrt(2))

Find the roots of sqrt2 x^(2) + 7x + 5 sqrt2 = 0

Find (a +b)^4 - (a - b)^4 . Hence, evaluate (sqrt3 + sqrt2)^4 - (sqrt3 - sqrt2)^4 .

Tangents are drawn to the hyperbola x^2/9-y^2/4=1 parallet to the sraight line 2x-y=1. The points of contact of the tangents on the hyperbola are (A) (2/(2sqrt2),1/sqrt2) (B) (-9/(2sqrt2),1/sqrt2) (C) (3sqrt3,-2sqrt2) (D) (-3sqrt3,2sqrt2)

The length of the chord of the parabola y^2=x which is bisected at the point (2, 1) is (a) 2sqrt(3) (b) 4sqrt(3) (c) 3sqrt(2) (d) 2sqrt(5)