Home
Class 12
MATHS
Obtain the volume of the parallelopiped ...

Obtain the volume of the parallelopiped whose sides are vectors `vec a= 2 hat i - 3 hat j + 4 hat k`, `vec b= hat i +2 hat j - hat k`, `vec c= 3 hat i - hat j +2 hat k`. Also find the vector `(vec a×vec b)×vec c`.

Text Solution

Verified by Experts

The correct Answer is:
`19hat(i) + 31hat(j) - 13 hat(k)`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • VECTOR ALGEBRA

    ARIHANT PUBLICATION|Exercise Odisha Bureau.s Textbook Solutions (Exericise 12(a))|46 Videos
  • VECTOR ALGEBRA

    ARIHANT PUBLICATION|Exercise Odisha Bureau.s Textbook Solutions (Exercise 12(b))|32 Videos
  • VECTOR ALGEBRA

    ARIHANT PUBLICATION|Exercise Questions for Practice (Part IV Vector (or Cross) Product of Two Vectors) Short Answer Type Questions|8 Videos
  • THREE-DIMENSIONAL GEOMETRY

    ARIHANT PUBLICATION|Exercise Chapter Practice|34 Videos

Similar Questions

Explore conceptually related problems

Obtain the volume of the parallelopiped, whose sides are vectors vec(a)=2hat(i)-3hat(j)+4hat(k),vec(b)=hat(i)+2hat(j)-hat(k) and vec(c )=3hat(i)-hat(j)+2hat(k) . Also, find the vector (vec(a)xxvec(b))xxvec(c ) .

Find the volume of a parallelopiped whose sides are given by vec(a) = -2hat(i) + 3hat(j) + hat(k), vec(b) = hat(i) - 2hat(j) + 2hat(k) and vec(c) = -hat(i) + 2hat(j) + 3hat(k) .

Find the volume of the parallelopiped whose sides given by the vectors hat(i) + hat(j) + hat(k), hat(k), 3hat(i) - hat(j) + 2hat(k)

Find the scalar projection of the vector vec a= 3 hat i+6 hat j+9 hat k on vec b= 2 hat i+2 hat j-hat k .

If vec(a) = 2hat(i) + 3hat(j) + hat(k), vec(b) = hat(i) - 2hat(j) + hat(k) and vec(c) = -3hat(i) + hat(j) + 2hat(k) , then find [vec(a)vec(b)vec(c)] .

Find the sum of the vectors vec(a) = hat(i) - 2hat(j) + hat(k), vec(b) = -2hat(i) + 4hat(j) + 5hat(k) and vec(c) = hat(i) - 6hat(j) - 7hat(k) .

Find the altitude of a parallelopiped determined by the vectors vec(a) = hat(i) + hat(j) + hat(k), vec(b) = 2hat(i) + 4hat(j) - hat(k) and vec(c) = hat(i) + hat(j) + 3hat(k) , if the base is taken to the parallelogram determined by vec(a) and vec(b) .

Find the value of lambda , if the vectors vec(a) = 2hat(i) - hat(j) + hat(k), vec(b) = hat(i) + 2hat(j) - 3hat(k) and vec(c) = 3hat(i) + lambda hat(j) + 5hat(k) are coplanar.

Show that the vectors vec(a) = hat(i) - 2hat(j) + 3hat(k), vec(b) = -2hat(i) + 3hat(j) - 4hat(k) and vec(c) = hat(i) - 3hat(j) + 5hat(k) are coplanar.

Find ]vec(a)vec(b)vec(c)] , when vec(a) = 2hat(i) - 3hat(j) + 4hat(k) , vec(b) = hat(i) + 2hat(j) - hat(k) and vec(c) = 3hat(i) - hat(j) + 2hat(k) .