Home
Class 12
MATHS
Write the direction ratio's of the vecto...

Write the direction ratio's of the vector `3vec(a) + 2vec(b)` where `vec(a) = hat(i) + hat(j) - 2hat(k)` and `vec(b) = 2hat(i) - 4hat(j) + 5hat(k)`.

Text Solution

Verified by Experts

The correct Answer is:
7, -5, 4
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • VECTOR ALGEBRA

    ARIHANT PUBLICATION|Exercise Chapter Practice (Short Answer Type Questions)|8 Videos
  • VECTOR ALGEBRA

    ARIHANT PUBLICATION|Exercise Chapter Practice (Long Answer Type Questions)|8 Videos
  • VECTOR ALGEBRA

    ARIHANT PUBLICATION|Exercise Odisha Bureau.s Textbook Solutions (Additional Exercise)|15 Videos
  • THREE-DIMENSIONAL GEOMETRY

    ARIHANT PUBLICATION|Exercise Chapter Practice|34 Videos

Similar Questions

Explore conceptually related problems

Find vec(a).vec(b) if vec(a) = -hat(i) + hat(j) - 2hat(k) and vec(b) = 2hat(i) + 3hat(j) - hat(k) .

Find a unit vector perpendicular to each of the vectors vec(a) + vec(b) and vec(a) - vec(b) , where vec(a) = hat(i) + hat(j) + hat(k) and vec(b) = hat(i) + 2hat(j) + 3hat(k) .

Find (vec(a) + 2vec(b)).(3 vec(a) - vec(b)) , if vec(a) = hat(i) + hat(j) + 2hat(k) and vec(b) = 3hat(i) + 2hat(j) - hat(k) .

Find the sum of the vectors vec(a) = hat(i) - 2hat(j) + hat(k), vec(b) = -2hat(i) + 4hat(j) + 5hat(k) and vec(c) = hat(i) - 6hat(j) - 7hat(k) .

Find angle theta between the vectors vec(a) = hat(i) + hat(j) - hat(k) and vec(b) = hat(i) - hat(j) + hat(k) .

Write a unit vector in the direction of the sum of the vectors vec(a) = 2hat(i) + 2hat(j) - 5hat(k) and vec(b) = 2hat(i) + hat(j) - 7hat(k) .

Find the unit vector in the direction of the vector vec(r_(1))-vec(r_(2)) , where vec(r_(1))=hat(i)+2hat(j)+hat(k) and vec(r_(2))=3hat(i)+hat(j)-5hat(k)

Find the scalar projection of the vector vec(a) = 3hat(i) + 6hat(j) + 9hat(k) on vec(b) = 2hat(i) + 2hat(j) - hat(k) .

Find the projection of vec(b) + vec(c) on vec(a) , where vec(a) = 2hat(i) - 2hat(j) + hat(k), vec(b) = hat(i) + 2hat(j) - 2hat(k) and vec(c) = 2hat(i) - hat(j) + 4hat(k) .

Determine k such that a vector vec(r) is at right angles to each of the vectors vec(a) = k hat(i) + hat(j) + 3hat(k), vec(b) = 2hat(i) + hat(j) - k hat(k) and vec(c) = -2hat(i) + k hat(j) + 3hat(k) .