Home
Class 12
MATHS
Prove that for any three vectors vec(a),...

Prove that for any three vectors `vec(a), vec(b)` and `vec(c), [vec(a) + vec(b) vec(b) + vec(c) vec(c) + vec(a)] = 2 [vec(a)vec(b)vec(c)]`

Answer

Step by step text solution for Prove that for any three vectors vec(a), vec(b) and vec(c), [vec(a) + vec(b) vec(b) + vec(c) vec(c) + vec(a)] = 2 [vec(a)vec(b)vec(c)] by MATHS experts to help you in doubts & scoring excellent marks in Class 12 exams.

Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • SAMPLE PAPER 3

    ARIHANT PUBLICATION|Exercise SHORT ANSWER TYPE QUESTIONS |25 Videos
  • SAMPLE PAPER 2

    ARIHANT PUBLICATION|Exercise Long Answer Type Questions|13 Videos
  • SAMPLE PAPER 4

    ARIHANT PUBLICATION|Exercise Long Answer Type Questions|13 Videos

Similar Questions

Explore conceptually related problems

Prove that [vec(a)+vec(b)" "vec(b)+vec(c)" "vec(c)+vec(a)]=2[vec(a)vec(b)vec(c)] .

For any three vectors vec(a), vec(b) and vec(c) , show that vec(a) - vec(b), vec(b) - vec(c) , vec(c) - vec(a) are coplanar.

Knowledge Check

  • For the non-zero vectors vec(a),vec(b) and vec(c ),vec(a)*(vec(b)xxvec(c ))=0 , if

    A
    `vec(b) bot vec(c )`
    B
    `vec(a) bot vec(b)`
    C
    `vec(a)||vec(c )`
    D
    `vec(a) bot vec (c )`
  • Similar Questions

    Explore conceptually related problems

    For any three vectors vec(a), vec(b) and vec(c) , prove that vec(a) xx (vec(b) - vec(c)) = (vec(a) xx vec(b)) - (vec(a) xx vec(c)) .

    Simplify [vec(a)-vec(b)vec(b)-vec(c)vec(c)-vec(a)] .

    For any three vectors vec(a), vec(b) and vec(c) , evaluate vec(a) xx (vec(b) + vec(c)) + vec(b) xx (vec(c) + vec(a)) + vec(c) xx (vec(a) + vec(b)) .

    Prove that [vec(a)xxvec(b)vec(b)xxvec(c )vec(c)xxvec(a)]=[vec(a)vec(b)vec(c)]^(2) .

    Prove that [vec(a)vec(b)vec(c) + vec(d)] = [vec(a)vec(b)vec(c)] + [vec(a) vec(b)vec(d)] .

    Prove that the four points with position vectors 2vec(a) + 3vec(b) - vec(c), vec(a) - 2vec(b) + 3vec(c) " , "3vec(a) + 4vec(b) - 2vec(c) and vec(a) - 6vec(b) + 6vec(c) are coplanar.

    Prove that vec(a) xx (vec(b) + vec(c)) + vec(b) xx (vec(c) + vec(a)) + vec(c) xx (vec(a) + vec(b)) = vec(0)