Home
Class 12
MATHS
Statement-1: For every natural number ng...

Statement-1: For every natural number `nge2`,
`(1)/(sqrt(1))+(1)/(sqrt(2))+(1)/(sqrt(3))+...+(1)/(sqrt(n))gtsqrt(n)`
Statement-2: For every natural number `nge2,`
`sqrt(n(n+1))ltn+1`

A

Statement-1 is true , Statement-2 is true, Statement-2 is correct explanation for Statement-1

B

Statement-1 is true , Statement-2 is true , Statement-2 is not a correct explanation for Statement-1

C

Statement-1 is true , Statement-2 is false

D

Statement-1 is false , Statement -2 is true .

Text Solution

Verified by Experts

Let `P(n)=(1)/(sqrt(1))+(1)/(sqrt(2))+.....+(1)/(sqrt(n))`
`therefore P(2)=(1)/(sqrt(2))+(1)w/(sqrt(2))=1.707gt sqrt(2)`
Let us assume that
`P(k)=(1)/(sqrt(1))+(1)/(sqrt(2))+.....+(1)/(sqrt(k))gt sqrt(k)` is true for `n=k+1`.
`=(1)/(sqrt(1))+(1)/(sqrt(2))+.....+(1)/(sqrt(k))+(1)/(sqrt(k+1))gt sqrt(k)+(1)/(sqrt(k+1))=sqrt(k(k+1)+1)/(sqrt((k+1)))gt(k+1)/(sqrt((k+1)))" "[therefore sqrt(k(k+1)+1)gtk,forallkge0]`
`therefore P(k+1)gt sqrt((k+1))`
By mathematical induction statement -1 is true , `forall n ge 2` .
Now , let `alpha(n)=sqrt(2(2+1))=sqrt(6)lt 3`
Let us assume that `alpha(k)=sqrt(k(k+1))lt(k+1)` is true
for `n=k+1`
LHS `=sqrt((k+1)(k+2))lt (k+2)" "[therefore (k+1)lt(k+2)]`
By mathematical induction Statement - 2 is true but Statement -2 is not a correct explanation for Statement -1.
Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

Simplify : (2)/(sqrt5+ sqrt3) + (1)/(sqrt3+sqrt2) - (3)/(sqrt5+sqrt2)

Simiplify (1)/(7+4sqrt3)+(1)/(2+sqrt5)

Knowledge Check

  • int(x)/(sqrt(1+x^(2)+sqrt((1+x^(2))^(3)) )) dx=....+c

    A
    `(1)/(2) log|+sqrt(1+x^(2))|`
    B
    `2 sqrt(1+sqrt(1+x^(2)))`
    C
    `2(1+sqrt(1+x^(2)))`
    D
    None of these
  • Similar Questions

    Explore conceptually related problems

    Which term of the sequence sqrt2, (1)/(sqrt2), (1)/(2 sqrt2) ……is (1)/(512 sqrt2) ?

    Let T = (1)/(3-sqrt(8))-(1)/(sqrt(8)-sqrt(7)) +(1)/(sqrt(7)-sqrt(6))-(1)/(sqrt(6)-sqrt(5))+(1)/(sqrt(5)+2) then-

    Prove each of the statements by the principle of mathematical induction : sqrtn lt (1)/(sqrt1) + (1)/(sqrt2) + (1)/(sqrt3) + …….+ (1)/(sqrtn) , for all natural numbers n gt= 2

    Prove that the following are irrationals (1) (1)/sqrt(2) (2) 7sqrt(5) (3)6+sqrt(2)

    Find the sum of the infinte series sin^(-1)(1/sqrt(2))+sin^(-1)((sqrt(2)-1)/(sqrt(6)))+....sin^(-1)((sqrt(n)-sqrt(n-1))/(sqrt(n(n+1))))

    Compute the following 56+(log)_(sqrt(2))4/(sqrt(7)+sqrt(3))+(log)_(1//2)1/(10+2sqrt(21))

    Differentiate sin^(-1)(4xsqrt(1-4x^(2)))w.r.t.sqrt(1-4x^(2)) , if x in(-(1)/(2sqrt2),(1)/(2sqrt2))