Home
Class 12
MATHS
Let R be a relation such that R = {(1,4)...

Let R be a relation such that `R = {(1,4), (3,7), (4,5), (4,6), (7,6)}`, find
(i) `R^(-1)OR^(-1)` and (ii) `(R^(-1)OR)^(-1)`

Text Solution

Verified by Experts

(i) We know that, `(R O R)^(-1) = R^(-1) O R^(-1)`
Dom (R ) = {1, 3, 4, 7}
Range (R ) = {4, 5, 6, 7}

We see that,
`1rarr4rarr5implies(1,5)inROR`
`1rarr4rarr6implies(1,6)inROR`
`3rarr7rarr6implies(3,6)inROR`
`therefore ROR={(1,5),(1,6),(3,6)}`
Then, `R^(-1)O R^(-1)=(ROR)^(-1)`
`={(5,1),(6,1),(6,3)}`
(ii) We know that, `(R^(-1)OR)^(-1)=R^(-1)O(R^(-1))^(-1)=R^(-1)OR`
Since,
`R={(1,4),(3,7),(4,5),(4,6),(7,6)}`
`therefore R^(-1)={(4,1),(7,3),(5,4),(6,4),(6,7)}`
`therefore` Dom (R ) = {1, 3, 4, 7}, Range (R ) = {4, 5, 6, 7}
Dom `(R^(-1))={4,5,6,7}`, Range `(R^(-1))` = {1,3,4,7}

We see that,
`1oversetRrarr4overset(R^(-1))rarr1implies(1,1)inR^(-1)OR`
`3oversetRrarr7overset(R^(-1))rarr3implies(3,3)inR^(-1)OR`
`4oversetRrarr5overset(R^(-1))rarr4implies(4,4)inR^(-1)OR`
`4oversetRrarr6overset(R^(-1))rarr4implies(4,4)inR^(-1)OR`
`4oversetRrarr6overset(R^(-1))rarr7implies(4,7)inR^(-1)OR`
`7oversetRrarr6overset(R^(-1))rarr4implies(7,4)inR^(-1)OR`
`7oversetRrarr6overset(R^(-1))rarr7implies(7,7)inR^(-1)OR`
`therefore R^(-1)OR={(1,1),(3,3),(4,4),(7,7),(4,7),(7,4)}`
Hence, `(R^(-1)OR)^(-1)=R^(-1)OR={(1,1),(3,3),(4,4),(7,7),(4,7),(7,4)}`
Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

Let A=[{:(3,7),(2,5):}] and B=[{:(6,8),(7,9):}] Verify that (AB)^(-1)=B^(-1)A^(-1)

If R be a relation from A = {1, 2, 3,4) to B = (1,3,5) such that (a, b) in R iff a lt b , then R o R^-1 is

Knowledge Check

  • Relation R = {(4,5),(1,4),(4,6),(7,6),(3,7)} then R^(-1)OR = .......

    A
    `{(1,1),(4,4),(7,4),(4,7),(7,7)}`
    B
    `{(1,1),(4,4),(4,7),(7,4),(7,7),(3,3)}`
    C
    `{(1,5),(1,6),(3,6)}`
    D
    None of these
  • Let R be the relation in the set {(1,2,3,4} given by R ={(1,2), (2,2), (1,1) (4,4),(1,3), (3,3), (3,2)}. Choose the correct answer.

    A
    R is reflexive symmetric but not transitive.
    B
    R is reflexive and transitive but not symmetric.
    C
    R is symmetric and transitive but not reflexive.
    D
    R is an equivalence relation.
  • If A = {1,2,3} and consider the relation R = {(1,1), (2,2) , (3,3) , (1,2) ,(2,3), (1,3)} . Then R is .......

    A
    reflexive but not symmetric
    B
    reflexive but not transitive
    C
    symmetric and transitive
    D
    neither symmetric, nor transitive
  • Similar Questions

    Explore conceptually related problems

    Let A={1,2,3,4,5}, B={4,5,6,7}. Find A-B.

    Examine each of the following relations given below and state in each case, giving resons whether it is function or not? (i) R={(2,1), (3,1), (4,2)}, (ii) R={(2,2), (2,4) ,(3,3),(4,4)} (ii) R={(1,2),(2,3),(3,4),(4,5),(5,6),(6,7)}

    set A= {1,2,3,4} R = {(2,2), (2,4),(3,3),(4,4)} denotes relation .

    A = {1,2,3,4} . A relation R is A is given by F = {(2,2),(3,3),(4,4),(1,2)} . Then R is relation.

    Let R be the relation in the set {1,2,3,4} given by R = {(1,2),(2,2),(1,1),(4,4),(1,3),(3,3),(3,2)} . Choose the correct answer.