Home
Class 12
MATHS
If x is real , the maximum value of (3x^...

If `x` is real , the maximum value of `(3x^2+9x+17)/(3x^2+9x+7)"i s"`

Text Solution

Verified by Experts

The correct Answer is:
8
Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

If x is real, the maximum and minimum values of expression (x^(2)+14x+9)/(x^(2)+2x+3) will be

If the maximum and minimum values of y=(x^2-3x+c)/(x^2+3x+c) are 7 and 1/7 respectively then the value of c is equal to

Knowledge Check

  • If x is a real number then maximum value of (3x^(2)+9x+17)/(3x^(2)+9x+7) is …………

    A
    `(1)/(4)`
    B
    41
    C
    1
    D
    `(17)/(7)`
  • If x is real, the minimum value of x^(2)-8x+17 is …………. (Where x in R )

    A
    `-1`
    B
    0
    C
    1
    D
    2
  • Similar Questions

    Explore conceptually related problems

    If x is real, the expression (x+2)/(2x^2 + 3x+6) takes all value in the interval

    Factorise : 6x^(3) + 13x^(2) + 9x + 2

    If x^(3)=9x , then find all possible values of x :-

    If x=-2-sqrt(3)i then find the value of 2x^(4)+5x^(3)+7x^(2)-x+41

    Given that, for all real x, the expression (x^2+2x+4)/(x^2-2x+4) lies between 1/3 and 3. The values between which the expression (9.3^(2x)+6.3^x+4)/(9.3^(2x)-6.3^x+4) lies are

    x^(2) + 3x +9=0