Home
Class 12
PHYSICS
State whether the following relations ar...

State whether the following relations are true or false
(1)`vec(AB)=vec(BA)`
(2)`vec(AB)=-vec(BA)`
(3)`|vec(AB)|=|vec(BA)|`
(4)`|vec(AB)|=|-vec(AB)|`
(5)`hatj=hatk`
(6)`|hatj|=|hatk|`

Text Solution

Verified by Experts

The correct Answer is:
(i) False (ii) True (iii) True (iv) True (v) False (vi) True
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • RACE

    ALLEN |Exercise Basic Maths (Units, Dimensions & Measurements)|37 Videos
  • RACE

    ALLEN |Exercise Basic Maths (KINEMATICS)|63 Videos
  • RACE

    ALLEN |Exercise Basic Maths (Co-ordinate & Algebra)|40 Videos
  • NEWTONS LAWS OF MOTION

    ALLEN |Exercise EXERCISE-III|28 Videos
  • SIMPLE HARMONIC MOTION

    ALLEN |Exercise Example|1 Videos

Similar Questions

Explore conceptually related problems

If (vec(a)-vec(b)).(vec(a)+vec(b))=27 and |vec(a)|=2|vec(b)| the find |vec(a)| and |vec(b)| .

If triangle ABC (Fig 10.18), which of the following is not true : (A) vec(AB)+vec(BC)+vec(CA)=vec(0) (B) vec(AB)+vec(BC)-vec(AC)=vec(0) ( C ) vec(AB)+vec(BC)-vec(CA)=vec(0) (D) vec(AB)-vec(CB)+vec(CA)=vec(0)

Knowledge Check

  • For the vectors vec(x) and vec(y),vec(x)+vec(y)=vec(a),vec(x)xx vec(y)=vec(b) and vec(x).vec(a)=1 then vec(x) = ………….., vec(y) = ……….

    A
    `vec(a),vec(a)-vec(x)`
    B
    `vec(a)-vec(b),vec(b)`
    C
    `vec(b),vec(a)-vec(b)`
    D
    None of these
  • Similar Questions

    Explore conceptually related problems

    In a regular hexagon ABCDEF, vec(AB) +vec(AC)+vec(AD)+ vec(AE) + vec(AF)=k vec(AD) then k is equal to

    If |vec(a)|=2,|vec(b)|=5 and vec(a).vec(b)=10 then find |vec(a)-vec(b)| .

    If |vec(a)|=2|vec(b)|=5 and |vec(a)xx vec(b)|=8 then find vec(a).vec(b) .

    In a regular hexagon ABCDEF, vec(AB)=a, vec(BC)=b and vec(CD) = c. Then, vec(AE) =

    Orthocenter of an equilateral triangle ABC is the origin O. If vec(OA)=veca, vec(OB)=vecb, vec(OC)=vecc , then vec(AB)+2vec(BC)+3vec(CA)=

    Prove that [vec(a)+vec(b), vec(b)+vec( c ), vec( c )+vec(a)]=2[vec(a),vec(b),vec( c )] .

    Find |vec(a)xx vec(b)| , if vec(a)=hati-7hatj+7hatk and vec(b)=3hati-2hatj+2hatk .