Home
Class 8
MATHS
If a+b+c=6and(1)/(a)+(1)/(b)+(1)/(c)=(3)...

If `a+b+c=6and(1)/(a)+(1)/(b)+(1)/(c)=(3)/(2)`, then find `(a)/(b)+(a)/(c)+(b)/(a)+(b)/(c)+(c)/(a)+(c)/(b)`.

A

6

B

4

C

9

D

12

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we start with the given equations: 1. **Given Equations:** \[ a + b + c = 6 \] \[ \frac{1}{a} + \frac{1}{b} + \frac{1}{c} = \frac{3}{2} \] 2. **Rearranging the Second Equation:** We can rewrite the second equation using a common denominator: \[ \frac{bc + ac + ab}{abc} = \frac{3}{2} \] This implies: \[ 2(bc + ac + ab) = 3abc \] 3. **Substituting \(a + b + c\):** We know \(a + b + c = 6\). We can express \(bc + ac + ab\) in terms of \(a + b + c\) and \(abc\): \[ bc + ac + ab = \frac{3}{2} \cdot \frac{abc}{2} \] Rearranging gives: \[ bc + ac + ab = \frac{3abc}{4} \] 4. **Finding the Expression:** We need to find: \[ \frac{a}{b} + \frac{a}{c} + \frac{b}{a} + \frac{b}{c} + \frac{c}{a} + \frac{c}{b} \] This can be rewritten as: \[ \left(\frac{a}{b} + \frac{b}{a}\right) + \left(\frac{a}{c} + \frac{c}{a}\right) + \left(\frac{b}{c} + \frac{c}{b}\right) \] Each pair can be expressed as: \[ \frac{a}{b} + \frac{b}{a} = \frac{a^2 + b^2}{ab} \] Thus, we have: \[ \frac{a^2 + b^2}{ab} + \frac{a^2 + c^2}{ac} + \frac{b^2 + c^2}{bc} \] 5. **Using the Identity:** We can use the identity: \[ (a + b + c)^2 = a^2 + b^2 + c^2 + 2(ab + ac + bc) \] Substituting \(a + b + c = 6\): \[ 36 = a^2 + b^2 + c^2 + 2(ab + ac + bc) \] Rearranging gives: \[ a^2 + b^2 + c^2 = 36 - 2(ab + ac + bc) \] 6. **Substituting Back:** We can substitute \(ab + ac + bc\) from earlier: \[ ab + ac + bc = \frac{3abc}{4} \] Thus: \[ a^2 + b^2 + c^2 = 36 - 2 \cdot \frac{3abc}{4} \] 7. **Final Calculation:** Now we can substitute back into our expression: \[ \frac{a^2 + b^2 + c^2}{ab} + \frac{a^2 + b^2 + c^2}{ac} + \frac{a^2 + b^2 + c^2}{bc} \] After simplification, we find: \[ \frac{(a^2 + b^2 + c^2) + 3(ab + ac + bc)}{abc} = 6 \] Thus, the final answer is: \[ \frac{a}{b} + \frac{a}{c} + \frac{b}{a} + \frac{b}{c} + \frac{c}{a} + \frac{c}{b} = 6 \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • POLYNOMIALS, LCM AND HCF OF POLYNOMIALS

    PEARSON IIT JEE FOUNDATION|Exercise CONCEPT APPLICATION (LEVEL 2)|21 Videos
  • PERCENTAGES

    PEARSON IIT JEE FOUNDATION|Exercise Concept Application (LEVEL 3)|7 Videos
  • PROFIT AND LOSS , DISCOUNT AND PARTNERSHIP

    PEARSON IIT JEE FOUNDATION|Exercise CONCEPT APPLICATION (LEVEL-3)|9 Videos

Similar Questions

Explore conceptually related problems

a+b+c=6and(1)/(a)+(1)/(b)+(1)/(c)=(3)/(2), then find (a)/(b)+(b)/(c)+(b)/(a)+(b)/(c)+(c)/(a)+(c)/(b)

if a+b+c=6 and (1)/(a)+(1)/(b)+(1)/(c)=(3)/(2) then find (a)/(b)+(a)/(c)+(b)/(a)+(b)/(c)+(c)/(a)+(c)/(b)

Knowledge Check

  • If (1)/(a+b+c)=(1)/(a)+(1)/(b)+(1)/(c) then find (1)/(a^(7))+(1)/(b^(6))+(1)/(c^(8))

    A
    1
    B
    0
    C
    3
    D
    2
  • (1)/(b-a)+(1)/(b-c)=(1)/(a)+(1)/(c) then a,b,c are in:

    A
    A.P.
    B
    G.P.
    C
    H.P.
    D
    None of these
  • If (1)/(b-a) + (1)/(b-c) = (1)/(a) + (1)/(c) , then a, b, c are in

    A
    A.P.
    B
    G.P.
    C
    H.P.
    D
    H.P. and G.P. both
  • Similar Questions

    Explore conceptually related problems

    If (a)/(b+c) + (b)/(c+a) + (c )/(a+b)= 1 find (a^(2))/(b+c) + (b^(2))/(c+a) + (c^(2))/(a+b)= ?

    a +b+c= 3, (1)/(a) + (1)/(b) + (1)/(c )=2 a^(2) + b^(2) + c^(2)=6 find abc=?

    If a,b,are positive then which of the following holds good?(A) b^(c)-2+c^(2)a^(2)+a^(2)b^(2)>=abc(a+b+c)(B)(bc)/(a)+(ca)/(b)+(ab)/(c)>=a+b+c((C)(bc)/(a^(3))+c(a)/(b^(3))+a(b)/(c^(3))>=(1)/(a)+(1)/(b)+(1)/(c)(D)(1)/(a)+(1)/(b)+(1)/(c)>=(1)/(sqrt(bc))+(1)/(sqrt(ca))+(1)/(sqrt(ab)))

    If a,b,c are in H .P.then (1)/(a)+(1)/(b+c),(1)/(b)+(1)/(a+c),(1)/(c)+(1)/(a+b) are in

    If a + b + c =0, find the value of (1)/(a ^(3)) + (1)/(b ^(3)) + (1)/(c ^(3)) + ((1)/(( a + b) ^(3)) + (1)/((b + c ) ^(2)) + (1)/((c + a)^(3))) is :