Home
Class 14
MATHS
lim(n->oo)((n+2)!+(n+1)!)/((n+3)!)...

`lim_(n->oo)((n+2)!+(n+1)!)/((n+3)!)`

Answer

Step by step text solution for lim_(n->oo)((n+2)!+(n+1)!)/((n+3)!) by MATHS experts to help you in doubts & scoring excellent marks in Class 14 exams.

Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

Consider the following statements : S_1: lim_(x->0) [x]/x is an indeterminate form (where [:] denoet greatest integer function). S_2 : lim_(x->oo)sin(3^x)/3^x=0 and S_3 : lim_(x->oo) sqrt((x-sinx)/(x+cos^2x)) does not exist. S_4 : lim_(n->oo)((n + 2)! + (n+1)!)/(n+3)!) (n in N) =0 State, in order, whether S_1,S_2,S_3,S_4 are t(or false

lim_(n->oo)((n^2-n+1)/(n^2-n-1))^(n(n-1)) is

Knowledge Check

  • lim_(n to oo)(n!)/((n+1)!-n!)

    A
    `0`
    B
    `2`
    C
    `-1`
    D
    `-2`
  • lim_(n to oo)(((n-1)(n+2)…3n)/(n^(2n)))^(1//n) is equal to:

    A
    `(27)/(e^(2))`
    B
    `(9)/(e^(2))`
    C
    `3log 3-2`
    D
    `(18)/(e^(4))`
  • Similar Questions

    Explore conceptually related problems

    lim_(n->oo)((n^2-n+1)/(n^2-n-1))^(n(n-1)) is

    lim_(n->oo)((n^2-n+1)/(n^2-n-1))^(n(n-1)) is

    lim_(n rarr oo)(2^(3n))/(3^(2n))=

    If the value of lim_(n to oo) n^(-n^2) ((n + 1)(n + 1/3)(n + 1/(3^2)) ….(n + 1/(3^(n-1))))^(n) is e^k then k is:

    lim_(n rarr oo)(2^(n)+3^(n))^(1/n)

    lim_(n->oo)(1/(n^2+1)+2/(n^2+2)+3/(n^2+3)+....n/(n^2+n))