Home
Class 12
MATHS
If y= 2^((1)/(log(x)4)) then prove that ...

If y= `2^((1)/(log_(x)4))` then prove that `x=y^(2)`.

Text Solution

Verified by Experts

`2^((1)/(log_(x)4))`
`:." "y=2^(log_(4)x)" "rArry=2^((1)/(2)log_(2)x)`
`rArr y^(2) = 2^(log_(2)x)" "("as "y gt 0)`
` rArr y^(2) = x `
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • LOGARITHM AND ITS PROPERTIES

    CENGAGE PUBLICATION|Exercise ILLUSTRATION 1.40|1 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE PUBLICATION|Exercise ILLUSTRATION 1.41|1 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE PUBLICATION|Exercise ILLUSTRATION 1.38|1 Videos
  • LOGARITHM AND ITS APPLICATIONS

    CENGAGE PUBLICATION|Exercise Subjective Type|9 Videos
  • MATHMETICAL REASONING

    CENGAGE PUBLICATION|Exercise Archives|10 Videos

Similar Questions

Explore conceptually related problems

If y=a^(1/(1-(log)_a x)) and z=a^(1/(1-(log)_a y)) ,then prove that x=a^(1/(1-(log)_a z))

If y=x log((1)/(ax)+(1)/(a)) , prove that, x(x+1)y_(2)+xy_(1)=y-1 .

If y=x^(x^(x^(...oo))) , then prove that, (dy)/(dx)=(y^(2))/(x(1-y log x)) .

If y = a^(1/(1-log_(a)x)) and z = a^(1/(1-log_(a)y)) , then show that x = a^(1/(1-log_(a)z))

If y = (x+ sqrt(1+x^2))^n then prove that (1+x^2)y_2+xy_1 = n^2y .

If cos^(-1)((y)/(b))=log((x)/(n))^(n) , prove that, x^(2)y_(2)+xy_(1)+n^(2)y=0 .

If a straight line passing through the focus of the parabola y^(2) = 4ax intersectts the parabola at the points (x_(1), y_(1)) and (x_(2), y_(2)) , then prove that x_(1)x_(2)=a^(2) .

If (log x)/(b-c) = (log y)/(c-a) = (log z)/(a-b) , then prove that x^(b+c).y^(c+a).z^(a+b) = 1

If (log x)/(y-z) = (log y)/(z-x) = (log z)/(x-y) , then prove that xyz = 1 .

If (log x)/(b-c) = (log y)/(c-a) = (log z)/(a-b) , then prove that x^(b^2+bc+c^2).y^(c^2+ca+a^2).z^(a^2+ab+b^2)=1