Home
Class 12
MATHS
Two lines L1x=5, y/(3-alpha)=z/(-2)a n d...

Two lines `L_1x=5, y/(3-alpha)=z/(-2)a n dL_2: x=alphay/(-1)=z/(2-alpha)` are coplanar. Then `alpha` can take value (s) a. `1` b. `2` c. `3` d. `4`

A

1

B

2

C

3

D

4

Text Solution

Verified by Experts

The correct Answer is:
a, d

Lines `(x-5)/(0)= (y-0)/(3-alpha)=(z-0)/(-2) and (x-alpha)/(0)= (y)/(-1) = (z)/(2-alpha)` will be coplanar if shortest distance is zero. Thus,
`" "|{:(5-alpha,,0,,0),(0,,3-alpha,,-2),(0,,-1,,2-alpha):}|=0`
or `" "(5-alpha)(alpha^(2)-5alpha+4)=0, alpha=1, 4, 5`
or `" "alpha=1, 4`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • THREE-DIMENSIONAL GEOMETRY

    CENGAGE PUBLICATION|Exercise ARCHIVES REASONING TYPE|2 Videos
  • THREE-DIMENSIONAL GEOMETRY

    CENGAGE PUBLICATION|Exercise ARCHIVES LINKED COMPREHENSION TYPE|3 Videos
  • THREE-DIMENSIONAL GEOMETRY

    CENGAGE PUBLICATION|Exercise ARCHIVES SINGLE CORRECT ANSWER TYPE|9 Videos
  • THREE DIMENSIONAL GEOMETRY

    CENGAGE PUBLICATION|Exercise All Questions|291 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE PUBLICATION|Exercise Archives (Numerical value type)|4 Videos

Similar Questions

Explore conceptually related problems

Two lines L_1: x=5, y/(3-alpha)=z/(-2) and L_2: x=alpha, y/(-1)=z/(2-alpha) are coplanar. Then alpha can take value (s) a. 1 b. 5 c. 3 d. 4

The lines (x-2)/(1)=(y-3)/(1)=(z-4)/(-k) and (x-1)/(k)=(y-4)/(2)=(z-5)/(1) are coplanar if __

Knowledge Check

  • Two lines L_(1): x = 5, (y)/(3-alpha) = (z)/(-2) and L_(2) : x = alpha, (y)/(-1) = (z)/(2- alpha) are coplanar. Then alpha can take value (s)

    A
    1
    B
    2
    C
    3
    D
    4
  • The lines (x)/(1)=(y)/(2)=(z)/(3) and (x-1)/(-2)=(y-2)/(-4)=(3-z)/(6) are

    A
    coincident
    B
    skew
    C
    intersecting
    D
    parallel
  • Similar Questions

    Explore conceptually related problems

    If A=|[alpha,2], [2,alpha]| and |A|^3=125 , then the value of alpha is a. +-1 b. +-2 c. +-3 d. +-5

    The lines (x-2)/1=(y-3)/1=(z-4)/-k and (x-1)/k=(y-4)/2=(z-5)/1 are coplaner if

    Prove that the stright line (x-1)/(2)=(y-2)/(3)=(z-3)/(4) and (x-2)/(3)=(y-3)/(4)=(z-4)/(5) are coplanar and find the equation of the plane in which they lie.

    Let (z-alpha)/(z+alpha) is purely imaginary and |z|=2, alphaepsilonR then alpha is equal to (A) 2 (B) 1 (C) sqrt2 (D) sqrt3

    The lines (x-2)/1=(y-3)/1=(z-4)/(-k) and (x-1)/k=(y-4)/2=(z-5)/1 are coplanar if a. k=1or-1 b. k=0or-3 c. k=3or-3 d. k=0or-1

    If f(alpha) = |{:(1,alpha,alpha^2),(alpha,alpha^2,1),(alpha^2,1,alpha):}| , then find the value of f(3^(1/3)) .