Home
Class 12
MATHS
Let vecx, vecy and vecz be three vectors...

Let `vecx, vecy and vecz` be three vectors each of magnitude `sqrt2` and the angle between each pair of them is `pi/3 if veca` is a non-zero vector perpendicular to `vecx and vecy xx vecz and vecb` is a non-zero vector perpendicular to `vecy and vecz xx vecx`, then

A

`vecb=(vecb.vecz)(vecz-vecx)`

B

`veca=(veca.vecy)(vecy-vecz)`

C

`veca.vecb=-(veca.vecy)(vecb.vecz)`

D

`veca=(veca.vecy)(vecz-vecy)`

Text Solution

Verified by Experts

The correct Answer is:
A, B, C

a,,b., c. According to the question
`vecx.vecz=vecx.vecy=vecy.vecz=sqrt(2).sqrt(2). cos ""(pi)/(3)=1`
Given `veca` is perpendicular to `vecx and vecyxxvecz`
`therefore veca =lamda_(1)(vecx xx(vecyxx vecz))`
`implies veca=lamda_(1) ((vecx.vecz)vecY-(vecx . vecy)vecz)`
`implies veca=lamda_(1) (vecy-vecz)`
Now` veca. vecy = lamda _(1) ( vecy. vecy- vecy.vecz) = lamda_(1) (2-1) `
` implies lamda_(1) = veca . vecy`
From (1) and (2) , `veca= ( veca. vecy) ( vecy- vexz)`
Similarly , ` vecb = ( vecb. vecz)( vecz - vecx) `
Now , `veca. vecb =(vecb. vecz) [ ( vecy-vecz).( vecz- vecx)]`
`= ( veca . vecy) (vecb. vecz) [1-1-2+1]`
` =- ( veca. vecy) ( vecb. vecz) `
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • JEE 2019

    CENGAGE PUBLICATION|Exercise matching column type|2 Videos
  • JEE 2019

    CENGAGE PUBLICATION|Exercise chapter -3 multiple correct answers type|2 Videos
  • JEE 2019

    CENGAGE PUBLICATION|Exercise Integer Answer type|2 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE PUBLICATION|Exercise All Questions|541 Videos
  • LIMITS

    CENGAGE PUBLICATION|Exercise Comprehension Type|4 Videos

Similar Questions

Explore conceptually related problems

If veca and vecb are non - zero vectors such that |veca + vecb| = |veca - 2vecb| then

vec a , vec b , and vec c are three vectors of equal magnitude. The angle between each pair of vectors is pi//3 such that | vec a+ vec b+ vec c|=sqrt6. Then | vec a| is equal to a. 2 b. -1 c. 1 d. sqrt(6)//3

Knowledge Check

  • Let vec(x), vec(y) and vec(z) be three vectors each of magnitude sqrt2 and the angle between each pair of them is (pi)/(3) . If vec(a) is a non-zero vector perpendicular to vec(x) and vec(y) xx vec(z) and vec(b) is a non-zero vector perpendicular to vec(y) and vec(z) xx vec(x) , then

    A
    `vec(b) = (vec(b).vec(z)) (vec(z) - vec(x))`
    B
    `vec(a) = (vec(a).vec(y)) (vec(y) - vec(z))`
    C
    `vec(a).vec(b) = - (vec(a).vec(y)) (vec(b).vec(z))`
    D
    `vec(a) = (vec(a).vec(y)) (vec(z) - vec(y))`
  • Similar Questions

    Explore conceptually related problems

    Let veca, vecb and vecc be the three vectors having magnitudes, 1,5 and 3, respectively, such that the angle between veca and vecb "is " theta and veca xx (veca xxvecb)=vecc . Then tan theta is equal to

    Let vec a, vec b, and vec c be three non coplanar unit vectors such that the angle between every pair of them is pi/3 . If vec a xx vec b+ vecb xx vec c=p vec a + q vec b + r vec c where p,q,r are scalars then the value of (p^2+2q^2+r^2)/(q^2) is

    Let veca, vecb, vecc be three unit vectors and veca.vecb=veca.vecc=0 . If the angle between vecb and vecc is pi/3 then find the value of |[veca vecb vecc]|

    Let veca , vecb , and vecc be three non-coplanar unit vectors such that the angle between every pair of them is pi/3 ​ . If veca × vecb + vecb × vecc =p veca +q vecb +r vecc , where p,q and r are scalars, then the value of p 2 +2q 2 +r 2 /q2 ​ is

    Vectors vecx,vecy,vecz each of magnitude sqrt(2) make angles of 60^0 with each other. If vecx xx(vecy xx vecz) = veca, vecy xx( vecz xx vecx)=vecb and vecx xx vecy=vecc, find vecx, vecy, vecz in terms of veca, vecb and vecc .

    If vecx.veca=0 vecx.vecb=0 and vecx.vecc=0 for some non zero vector vecx then show that [veca vecb vecc]=0

    Let veca and vecb be two non- zero perpendicular vectors. A vector vecr satisfying the equation vecr xx vecb = veca can be