Home
Class 12
MATHS
Let O be the origin and vec(OX) , vec(O...

Let O be the origin and` vec(OX) , vec(OY) , vec(OZ)` be three unit vector in the directions of the sides `vec(QR) , vec(RP),vec(PQ)` respectively , of a triangle PQR.
`|vec(OX)xxvec(OY)|=`

A

sin (P + Q)

B

sin 2R

C

sin (P+R)

D

sin (Q+R)

Text Solution

Verified by Experts

The correct Answer is:
A

`|vec(OX)xxvec(OY)|=|vec(OX)||vec(OY)|sin (pi-R)`
`=sin R=sin (P+Q)`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • JEE 2019

    CENGAGE PUBLICATION|Exercise chapter -3|1 Videos
  • JEE 2019

    CENGAGE PUBLICATION|Exercise MCQ|92 Videos
  • JEE 2019

    CENGAGE PUBLICATION|Exercise chapter -2|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE PUBLICATION|Exercise All Questions|541 Videos
  • LIMITS

    CENGAGE PUBLICATION|Exercise Comprehension Type|4 Videos

Similar Questions

Explore conceptually related problems

If vec(a) , vec(b)and vec(a) xx vec(b) are three unit vectors , find the angles beween the vectors vec(a) and vec(b)

If vec a , a n d vec b are unit vectors , then find the greatest value of | vec a+ vec b|+| vec a- vec b|dot

Knowledge Check

  • Let vec(a).vec(b) and vec(c) be three unit vectors such that vec(a) xx (vec(b) xx vec(c)) = (sqrt3)/(2) (vec(b) + vec(c)) . If vec(b) is not parallel to vec(c) , then the angle between vec(a) and vec(b) is

    A
    `(3pi)/(4)`
    B
    `(pi)/(2)`
    C
    `(2pi)/(3)`
    D
    `(5pi)/(6)`
  • Let vec(a), vec(b) and vec(c) be three non-zero vectors such that no two of them are collinear and (vec(a) xx vec(b)) xx vec(c) = (1)/(3) |vec(b)||vec(c)| vec(a) . If theta is the angle between vector vec(b) and vec(c) , then a value of sin theta is

    A
    `(2)/(3)`
    B
    `(-2sqrt3)/(3)`
    C
    `(2sqrt2)/(3)`
    D
    `(-sqrt2)/(3)`
  • Similar Questions

    Explore conceptually related problems

    Let vec(a),vec(b),vec (c ) be the positions vectors of the vertices of a triangle , prove that the area of the triangle is 1/2| vec(a) xx vec(b) + vec(b) xx vec(c)+ vec(c)xx vec(a)|

    Suppose that vec(p), vec(q) and vec(r) are three non-coplanar vectors in R. Let the components of a vector vec(s) along vec(p), vec(q) and vec(r) be 4, 3 and 5 respectively. If the components of this vector vec(s) " along" (-vec(p) + vec(q) + vec(r)), (vec(p) - vec(q) + vec(r)) and (-vec(p) - vec(q) + vec(r)) are x,y and z respectively, then the value of 2x + y + z is

    vec u , vec v and vec w are three non-coplanar unit vecrtors and alpha,beta and gamma are the angles between vec u and vec v , vec v and vec w ,a n d vec w and vec u , respectively, and vec x , vec y and vec z are unit vectors along the bisectors of the angles alpha,betaa n dgamma , respectively. Prove that [ vecx xx vec y vec yxx vec z vec zxx vec x]=1/(16)[ vec u vec v vec w]^2sec^2(alpha/2)sec^2(beta/2)sec^2(gamma/2) .

    If vec(x), vec(y), vec(z) are three vectors, show that the points having positive vectors 7vec(x) - vec(z), vec(x) + 2vec(y) + 3vec(z) and -2vec(x) + 3vec(y) + 5vec(z) are collinear

    A vector vec d is equally inclined to three vectors vec a= hat i+ hat j+ hat k , vec b=2 hat i+ hat ja n d vec c=3 hat j-2 hat kdot Let vec x , vec y ,a n d vec z be three vectors in the plane of vec a , vec b ; vec b , vec c ; vec c , vec a , respectively. Then a. vec x. vec d=-1 b. vec y. vec d=1 c. vec z. vec d=0 d. vec r. vec d=0,w h e r e vec r=lambda vec x+mu vec y+delta vec z

    If vec a , vec b , vec c are mutually perpendicular unit vectors, find |2 vec a+ vec b+ vec c|dot