Home
Class 12
MATHS
If any line perpendicular to the transve...

If any line perpendicular to the transverse axis cuts the hyperbola `(x^2)/(a^2)-(y^2)/(b^2)=1` and the conjugate hyperbola `(x^2)/(a^2)-(y^2)/(b^2)=-1` at points `Pa n dQ` , respectively, then prove that normal at `Pa n dQ` meet on the x-axis.

Text Solution

Verified by Experts

Let the perpendicular line cuts the hyperbola
`(x^(2))/(a^(2))-(y^(2))/(b^(2))=1`
at point `P(x_(1),y_(1))` and the hyperbola
`(x^(2))/(a^(2))-(y^(2))/(b^(2))=-1`
at point `Q(x_(1),y_(1))`.
Normal to the hyperbola
`(x^(2))/(a^(2))-(y^(2))/(b^(2))=1`
at point P is
`(a^(2)x)/(x_(1))+(b^(2)y)/(y_(1))=a^(2)+b^(2)" (1)"`
Normal to the hyperbola
`(x^(2))/(a^(2))-(y^(2))/(b^(2))=-1`
at Q is
`(a^(2)x)/(x_(1))+(b^(2)y)/(y_(2))=a^(2)+b^(2)" (2)"`
In (1) and (2), putting y = 0, we get
`x=(a^(2)+b^(2))/(a^(2))x_(1)`
Hence, both normals meet on the x-axis.
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • HYPERBOLA

    CENGAGE PUBLICATION|Exercise CONCEPT APPLICATION EXERCISE 7.6|4 Videos
  • HYPERBOLA

    CENGAGE PUBLICATION|Exercise EXERCISES|68 Videos
  • HYPERBOLA

    CENGAGE PUBLICATION|Exercise CONCEPT APPLICATION EXERCISE 7.4|5 Videos
  • HIGHT AND DISTANCE

    CENGAGE PUBLICATION|Exercise Archives|3 Videos
  • INDEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer Type|2 Videos

Similar Questions

Explore conceptually related problems

The length of the transverse axis of the hyperbola 9x^(2)-16y^(2)-18x -32y - 151 = 0 is

Find the equations of the tangent and normal to the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 at the point (x0, y0).

Knowledge Check

  • The length of the transverse axis of the hyperbola 9y^(2) - 4x^(2) = 36 is -

    A
    2 unit
    B
    3 unit
    C
    4 unit
    D
    5 unit
  • The slope of the tangent to the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 at the point ( x_(1),y_(1)) is-

    A
    `(b^(2)x_(1))/(a^(2)y_(1))`
    B
    `(b^(2)y_(1))/(a^(2)x_(1))`
    C
    `-(b^(2)x_(1))/(a^(2)y_(1))`
    D
    `(b^(2)y_(1))/(a^(2)x_(1))`
  • The slop of the normal to the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 at the point ( a sec theta , b tan theta) is -

    A
    `(b)/(a) sin theta`
    B
    `-(b)/(a) sin theta`
    C
    `(a)/(b) sin theta`
    D
    `-(a)/(b) sin theta`
  • Similar Questions

    Explore conceptually related problems

    If hyperbola (x^2)/(b^2)-(y^2)/(a^2)=1 passes through the focus of ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 , then find the eccentricity of hyperbola.

    Show that the equation of the normal to the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 at the point (asqrt(2),b) is ax+b sqrt(2)=(a^2+b^2)sqrt(2) .

    If the straight line lx+my+n=0 touches the : hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 , show that a^(2) l^(2)-b^(2)m^(2)=n^(2) .

    The length of the conjugate axis of the hyperbola 9x^(2) - 25y^(2) = 225 is -

    If e_1 is the eccentricity of the hyperbola (y^(2))/(b^(2)) - (x^(2))/(a^(2)) = 1 then e_(1) =