Home
Class 12
MATHS
If (b2-b1)(b3-b1)+(a2-a1)(a3-a1)=0 , the...

If `(b_2-b_1)(b_3-b_1)+(a_2-a_1)(a_3-a_1)=0` , then prove that the circumcenter of the triangle having vertices `(a_1,b_1),(a_2,b_2)` and `(a_3,b_3)` is `((a_2+a_3)/2,(b_(2+)b_3)/2)`

Text Solution

Verified by Experts

Given `(b_2-b_1)(b_3-b_1)+(a_2-a_1)(a_3-a_1)=0`

or `(b_2-b_1)(b_3-b_1)=-(a_2-a_1)(a_3-a_1)`
or `((b_2-b_1)/(a_2-a_1))((b_3-b_1)/(a_3-a_1))=-1`
or `("slope of AB")xx("slope of AC") =-1`
Therefore, the triangle is right -angled at point `(a_1,b_2)`. Hence, the circumcenter is the midpoint of `(a_2b_2)` and `(a_3,b_3)` which is `((a_2+a_3)/(2),(b_2+b_3)/(2))`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • COORDINATE SYSYEM

    CENGAGE PUBLICATION|Exercise Illustration1.48|1 Videos
  • COORDINATE SYSYEM

    CENGAGE PUBLICATION|Exercise Illustration1.49|1 Videos
  • COORDINATE SYSYEM

    CENGAGE PUBLICATION|Exercise Illustration1.46|1 Videos
  • COORDINATE SYSTEM

    CENGAGE PUBLICATION|Exercise Multiple Correct Answers Type|2 Videos
  • CROSS PRODUCTS

    CENGAGE PUBLICATION|Exercise DPP 2.2|13 Videos

Similar Questions

Explore conceptually related problems

If the points ( a_1,b_1),(a_2,b_2) and (a_1+a_2,b_1+b_2) are collinear ,show that a_1b_2=a_2b_1 .

If |x_1y_1 1x_2y_2 1x_3y_3 1|=|a_1b_1 1a_2b_2 1a_3b_3 1| then the two triangles with vertices (x_1, y_1),(x_2,y_2),(x_3,y_3) and (a_1,b_1),(a_2,b_2),(a_3,b_3) are equal to area (b) similar congruent (d) none of these

Knowledge Check

  • If D= |{:(a_1,b_1,c_1),(a_2,b_2,c_2),(a_3,b_3,c_3):}| and A_1,B_1,C_1 etc. are the respective cofactors of the elements a_1,b_1,c_1 etc. then D will be-

    A
    `a_2C_2+b_2C_2+c_2C_2`
    B
    `c_1C_1+c_2C_2+c_3C_3`
    C
    `a_1A_1+b_1B_1+c_1C_1`
    D
    `a_1B_1+a_2B_2+a_3B_3`
  • The total number of infections (one-one into mappings) from {a_1,a_2,a_3,a_4} to {b_1,b_2,b_3,b_4,b_5,b_6,b_7} is

    A
    400
    B
    420
    C
    800
    D
    840
  • Similar Questions

    Explore conceptually related problems

    If the lines a_1x+b_1y+1=0,a_2x+b_2y+1=0 and a_3x+b_3y+1=0 are concurrent, show that the point (a_1, b_1),(a_1, b_2) and (a_3, b_3) are collinear.

    Prove that the value of each the following determinants is zero: |[a_1,l a_1+mb_1,b_1],[a_2,l a_2+mb_2,b_2],[a_3,l a_3+m b_3,b_3]|

    If a_1,a_2, a_3, a_4 be the coefficient of four consecutive terms in the expansion of (1+x)^n , then prove that: (a_1)/(a_1+a_2)+(a_3)/(a_3+a_4)=(2a_2)/(a_2+a_3)dot

    If the equation of the locus of a point equidistant from the points (a_1,b_1) and (a_2,b_2) is (a_1-a_2)x+(b_1-b_2)y+c=0 , then the value of C is

    Find the number of all three elements subsets of the set {a_1, a_2, a_3, ........... a_n} which contain a_3dot

    If A_1B_1C_1 , A_2B_2C_2 and A_3B_3C_3 are three digit numbers, each of which is divisible by k, then Delta = |(A_1,B_1,C_1),(A_2,B_2,C_2),(A_3,B_3,C_3)| is divisible by ____