Home
Class 12
MATHS
Prove that sum(r=0)^n r(n-r)(.^nC r)^2=n...

Prove that `sum_(r=0)^n r(n-r)(.^nC_ r)^2=n^2(.^(2n-2)C_n)dot`

Text Solution

Verified by Experts

`underset(r=0)overset(n)sumr(n-r)(.^(n)C_(r))^(2) = underset(r=0)overset(n)sumr.^(n)C_(r)(n-r).^(n)C_(n-r)`
`=underset(r=0)overset(n)sumn.^(n-)C_(r-1)n.^(n-1)C_(n-r-1)`
`= n^(2)underset(r=0)overset(n)sum.^(n-1)C_(r-1).^(n-1)C_(n-r-1)`
`= n^(2) xx "coefficient of" x^(n-2) "in" (1+x)^(n-1)(1+x)^(n-1)`
`= n^(2) xx .^(2n-2)C_(n-2) = n^(2).^(2n-2)C_(n)`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Concept Application Exercise 8.8|10 Videos
  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Single Correct Answer|152 Videos
  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Concept Application Exercise 8.6|10 Videos
  • AREA

    CENGAGE PUBLICATION|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE PUBLICATION|Exercise For problems 3 and 4|2 Videos

Similar Questions

Explore conceptually related problems

Prove that sum_(r=0)^(2n)(r. ^(2n)C_r)^2=n^(4n)C_(2n) .

Prove that sum_(r=0)^(2n) r.(""^(2n)C_(r))^(2)= 2n.""^(4n-1)C_(2n-1) .

Prove that sum_(r=0)^n 3^r n Cundersetr = 4^n .

If x + y = 1 , prove that sum_(r=0)^(n) r""^(n)C_(r) x^(r ) y^(n-r) = nx .

Prove that sum_(r=0)^ssum_(s=1)^n^n C_s^s C_r=3^n-1.

Prove that sum_(r=0)^(n) ""^(n)C_(r).(n-r)cos((2rpi)/(n)) = - n.2^(n-1).cos^(n)'(pi)/(n) .

prove that sum_(r=0)^n(-1)^r^n C_r . [ 1/(2^r)+(3^r)/(2^(2r))+(7^r)/(2^(3r))+(15^r)/(2^(4r))+ ......up to m terms ] = (2^(m n)-1)/(2^(m n)(2^n-1))

If x+y=1, prove that sum_(r=0)^n .^nC_r x^r y^(n-r) = 1 .

Prove that (3!)/(2(n+3))=sum_(r=0)^n(-1)^r((n C_r)/((r+3)C_3))

Prove that sum_(r=0)^n^n C_r(-1)^r[i+i^(2r)+i^(3r)+i^(4r)]=2^n+2^(n/2+1)cos(npi//4),w h e r ei=sqrt(-1)dot