Home
Class 12
MATHS
Show that xcosalpha+ysinalpha=p touches ...

Show that `xcosalpha+ysinalpha=p` touches the parabola `y^2=4a x` if `pcosalpha+asin^2alpha=0` and that the point of contact is `(atan^2alpha,-2atanalpha)dot`

Text Solution

Verified by Experts

The given line is
`xcosalpha+ysinalpha=p`
`ory=-xcotalpha+p" cosec "alpha`
`:.m=-cotalphaandc=p" cosec "alpha`
Since the given line touches the parabola, we have
`c=(a)/(m)`
or cm=a
or `(pcosalpha+asin^(2)alpha=0)`
`orpcosalpha+asin^(2)alpha=0`
The point of contact is
`((a)/(cot^(2)alpha),(2a)/(cotalpha))-=(atan^(2)alpha,-2atanalpha)`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • PARABOLA

    CENGAGE PUBLICATION|Exercise ILLUSTRATION 5.38|1 Videos
  • PARABOLA

    CENGAGE PUBLICATION|Exercise ILLUSTRATION 5.39|1 Videos
  • PARABOLA

    CENGAGE PUBLICATION|Exercise ILLUSTRATION 5.36|1 Videos
  • PAIR OF STRAIGHT LINES

    CENGAGE PUBLICATION|Exercise Numberical Value Type|5 Videos
  • PERMUTATION AND COMBINATION

    CENGAGE PUBLICATION|Exercise Comprehension|8 Videos

Similar Questions

Explore conceptually related problems

If cos alpha, sin alpha and cot alpha are in G.P. show that tan^(6)alpha- tan^(2)alpha=1

If the straight line xcosalpha+ysinalpha=p touches the curve x y=a^2, then prove that p^2=4a^2cosalphasinalphadot

Knowledge Check

  • If the line x+y =1 is a tangent to the parabola y^(2)-y +x=0 , then the point of contact is-

    A
    `(0, 1)`
    B
    `(a, 0)`
    C
    `(1, 1)`
    D
    `(-1, 0)`
  • Similar Questions

    Explore conceptually related problems

    Show that the image of the point (h,k) with respect to the striaight line x cos alpha+ y sin alpha=p is the point (2 p cos alpha- h cos2 alpha- k sin 2 alpha, 2p sin alpha- h sin 2 alpha- k cos 2 alpha) .

    If the line 2x+sqrt6y=2 touches the hyperbola x^2-2y^2=4 , then the point of contact is

    Find the locus of the midpoint of chords of the parabola y^2=4a x that pass through the point (3a ,a)dot

    Two tangents to the parabola y^(2)=4ax meet at an angle alpha . Prove that the locus of their of intersections, is y^(2)-4ax=(x+a)^(2) tan^(2) alpha

    If tan(alpha+beta)=a+b and tan(alpha-beta)=a-b then show that atanalpha-btanbeta=a^2-b^2

    If x sin^3 alpha + y cos^3 alpha = sin alpha cos alpha and x sin alpha -y cos alpha =0 , then the value of x^2 +y^2 is

    If the straight line xcosalpha+ysinalpha=p touches the curve (x^2)/(a^2)+(y^2)/(b^2)=1 , then prove that a^2cos^2alpha-b^2sin^2alpha=p^2 .