Home
Class 12
MATHS
In Delta ABC, prove that c cos (A - alph...

In `Delta ABC`, prove that `c cos (A - alpha) + a cos (C + alpha) = b cos alpha`

Text Solution

Verified by Experts

`c cos (A - alpha) + a cos (C + alpha)`
`= c (cos A cos alpha + sin A sin alpha) + a(cos C cos alpha - sin C sin alpha)`
`=cos alpha (c cos A + a cos C) + c sin A sin alpha - a sin C sin alpha`
`= b cos alpha + sin alpha(c sin A - a sin C) = b cos alpha`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE PUBLICATION|Exercise Concept application exercise 5.4|5 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE PUBLICATION|Exercise Concept application exercise 5.5|7 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE PUBLICATION|Exercise Concept application exercise 5.2|8 Videos
  • PROGRESSION AND SERIES

    CENGAGE PUBLICATION|Exercise ARCHIVES (NUMERICAL VALUE TYPE )|8 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE PUBLICATION|Exercise All Questions|1119 Videos

Similar Questions

Explore conceptually related problems

Prove that cos alpha cos (120^(@) + alpha) cos (240^(@) + alpha) = 1/4 cos 3 alpha

In any triangle ABC, prove that cosA + cos B + cos C le 3/2

Prove that, cos alpha + cos(120^(@) + alpha) + cos (120^(@) - alpha) = 0

If tan theta = (Q sin alpha)/(P + Q cos alpha), "prove that", tan (alpha - theta) = (P sin alpha)/(Q + P cos alpha).

Prove that, cos^(3) alpha + cos^(3) (120^(@) + alpha) + cos^(3) (240^(@) + alpha) = 3/4 cos 3 alpha

If alpha= (2pi)/(7) , then prove that cos alpha+ cos 2 alpha+ cos 4alpha=-(1)/(2) . Hence, deduce that sin alpha+ sin 2alpha+ sin 4alpha=(sqrt(7))/(2)

If cos (beta - gamma) + cos (gamma - alpha) + cos (alpha - beta) = -3/2, "show that", cos alpha + cos beta + cos gamma = 0 "and" sin alpha + sin beta + singamma = 0."Hence deduce that," cos (beta - gamma) = cos (gamma - alpha) = cos (alpha - beta) = -1/2.

Find the sum to n terms of the following series: cos alpha + cos (pi - alpha) + cos (2pi + alpha) + .......(0 < alpha < (pi)/2) .

Prove : int ( cos 2x - cos 2 alpha )/(cos x - cos alpha ) dx = 2(x cos alpha + sin x) +c

1/(cos alpha + cos 3 alpha)+ 1/(cos alpha + cos 5 alpha)+ 1/(cos alpha + cos 7 alpha) +....+ 1/(cos alpha +cos(2n+1) alpha) = 1/2 "cosec" alpha[tan (n+1) alpha - tan alpha ]