Home
Class 12
MATHS
The sides of A B C satisfy the equation...

The sides of ` A B C` satisfy the equation `2a^2+4b^2+c^2=4a b+2ac` Then a) the triangle is isosceles b) the triangle is obtuse c) `B=cos^(-1)(7/8)` d) `A=cos^(-1)(1/4)`

A

the triangle is isosceles

B

the triangle is obtuse

C

`B = cos^(-1) (7//8)`

D

`A = cos^(-1) (1//4)`

Text Solution

Verified by Experts

The correct Answer is:
A, C, D

`(a^(2) - 2ac + c^(2)) + (a^(2) - 4ab+ 4b^(2)) = 0`
or `(a-c)^(2) + (a-2b)^(2) = 0`
`rArr a = c and a = 2b`
Therefore, the triangle is isosceles.
Also, `cos B = (a^(2) + c^(2) -b^(2))/(2ac) = (7b^(2))/(8b^(2)) = (7)/(8)`
`cosA = (b^(2) + c^(2) -a^(2))/(2bc) = (1)/(4)`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE PUBLICATION|Exercise Linked comprehension type|34 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE PUBLICATION|Exercise Matrix match type|6 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE PUBLICATION|Exercise Exercises|80 Videos
  • PROGRESSION AND SERIES

    CENGAGE PUBLICATION|Exercise ARCHIVES (NUMERICAL VALUE TYPE )|8 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE PUBLICATION|Exercise All Questions|1119 Videos

Similar Questions

Explore conceptually related problems

The sides of triangle ABC satisfy the relations a + b - c= 2 and 2ab -c^(2) =4 , then the square of the area of triangle is ______

If the sines of the angles A and B of a triangle ABC satisfy the equation c^2x^2-c(a+b)x+a b=0 , then the triangle (a) is acute angled (b) is right angled (c) is obtuse angled (d) satisfies the equation sinA+cosA ((a+b))/c

Knowledge Check

  • The sides of a triangleABC satisfy the equation 2a^(2) + 4b^(2) + c^(2) =4ab + 2ac , then-

    A
    the triangle is isoceles
    B
    the triangle is obtuse
    C
    `B= cos^(-1) 7/8`
    D
    `A = cos^(-1) 1/4`
  • In triangle ABC, If cos B= a/(2c) , then the triangle is-

    A
    equilateral
    B
    isosceles
    C
    right angled
    D
    scalene.
  • In a triangle ABC if there angles are A,B,C then cos ((A+B)/2)

    A
    cos C/2
    B
    (-sinC)
    C
    sin C/2
    D
    cos C
  • Similar Questions

    Explore conceptually related problems

    If 2 cos A = (sin B)/(sin C) then show that the triangle is isosceles.

    In the triangle ABC, if cos 3 A + cos 3B+ cos 3C=1 , show that the triangle is obtuse-angled.

    If in a triangle ABC, cos^(2)A + cos^(2)B + cos^(2)C =1 , then show that the triangle is right angled.

    If sinA=sin^2Ba n d2cos^2A=3cos^2B then the triangle A B C is right angled (b) obtuse angled (c)isosceles (d) equilateral

    If in a triangle ABC, (bc)/(2 cos A) = b^(2) + c^(2) - 2bc cos A then prove that the triangle must be isosceles.