Home
Class 12
MATHS
If (1 + x)^(n) = C(0) + C(1) x + C(2) ...

If ` (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n)` , prove that
` C_(0) *""^(2n)C_(n) - C_(1) *""^(2n-2)C_(n) + C_(2) *""^(2n-4) C_(n) -…= 2^(n)`

Text Solution

Verified by Experts

The correct Answer is:
A, B

`(a,b)` The given series can be written as
`S=sum_(r=0)^(n)'^(n)C_(r )^(2n-2)C_(m)(-1)^(r )`
`=sum_(r=0)^(n)'^(n)C_(r )(-1)^(r )xx"coefficient of" x^(m) "in" (1+x)^(2n-2r)`
`="coefficient of" x^(m) "in" sum_(r=0^(n)'^(n)C_(r )(-1)^(r )[(1+x)^(2)]^(n-r)`
`="coefficient of" x^(m) "in" (x^(2)+2x)^(n)`
`="coefficient of" x^(m) "in" x^(n) (x+2)^(n)`
`="coefficient of" x^(m-n) "in" (x+2)^(n)`
`=^(n)C_(m-n)2^(n-(m-n))=((n),(m-n))2^(2n-m)` if `m ge n` and `0` if `m lt n`.
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Comprehension|11 Videos
  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Archives|16 Videos
  • AREA

    CENGAGE PUBLICATION|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE PUBLICATION|Exercise For problems 3 and 4|2 Videos

Similar Questions

Explore conceptually related problems

Prove that ^nC_0 "^(2n)C_n-^nC_1 ^(2n-2)C_n +^nC_2 ^(2n-4)C_n =2^n

If (1+x)^(n)=^(n)C_(0)+^(n)C_(1)x+^(n)C_(2)x^(2)+…+^(n)C_(n)x^(n) , prove that, nC_(1)-2^(n)C_(2)+3^(n)C_(3)-…+(-1)^(n-1).n^(n)C_(n)=0 .

Knowledge Check

  • The value of (""^(n) C_(1)+2. ""^(n) C_(2)+3. ""^(n)C_(3)+…+ n""^(n)C_(n)) is-

    A
    `2^(n)`
    B
    `n.2 ^(n)`
    C
    `n. 2^(n-1)`
    D
    `n. 2^(n+1)`
  • Similar Questions

    Explore conceptually related problems

    If (1+x)^(n)=^(n)C_(0)+^(n)C_(1)x+^(n)C_(2)x^(2)+…+^(n)C_(n)x^(n) , prove that, nC_(0) +2^(n)C_(1)+3^(n)C_(2)+…+(n+1)^(n)C_(n)=(n+2)*2^(n-1) .

    If (1+x)^(n) = C_(0) + C_(1)x + C_(2)x^(2) + "….." + C_(n)x^(n) , then find the value of C_(0)+C_(2)+C_(4)+C_(6)+........ ​ ​

    If (18x^2+12x+4)^n = a_0 +a_(1x)+ a_(2x)^2 +......+ a_(2n)x^(2n) , prove that a_r= 2^n3^r ( "^(2n)C_r + "^(n)C_1 "^(2n-2)C_r + "^(n)C_2 "^(2n-4)C_r + ....

    If ""^(n)C_(8)=""^(n)C_(2) , find ""^(n)C_(2) .

    If (1+x)^(n)=C_(0)+C_(1)+x+C_(2)x^(2)+...+C_(n)x^(n) show that, C_(0)-2^(2)*C_(1)+3^(2)*C_(2)-...+(-1)^(n)*(n+1)^(2)*C_(n)=0 (n gt 2)

    If (1+x)^(n)=1+""^(n)C_(1)x+""^(n)C_(2)x^(2)+….+""^(n)C_(n) x^(n) show that, n*2^(n-1)=""^(n)C_(1)+2*""^(n)C_(2)+….. +n*""^(n)C_(n) .

    If (1+x)^(n)=C_(0)+C_(1)x+C_(2)x^(2)+…+C_(n)x^(n) , show that, (C_(0))/(1)+(C_(1))/(2)+(C_(2))/(3)+…+(C_(n))/(n+1)=(2^(n+1))/(n+1)