Home
Class 12
MATHS
If f(x)={x^2 sin((pi x)/2), |x|<1; x|x|...

If `f(x)={x^2 sin((pi x)/2), |x|<1`; `x|x|, |x|>=1` then `f(x)` is

A

an even function

B

an odd function

C

a periodic function

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
B

`f(-x)={((-x)^(2)"sin"(pi (-x))/(2)",",|-x| lt 1),((-x)|-x|",",|-x| ge 1):},`
`={(-x^(2)"sin"(pi x)/(2)",",|x| lt 1),(-x|x|",",|x| ge 1):}`,
`= -f(x)`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE PUBLICATION|Exercise Archives (Numerical Value Type)|3 Videos
  • SCALER TRIPLE PRODUCTS

    CENGAGE PUBLICATION|Exercise DPP 2.3|11 Videos

Similar Questions

Explore conceptually related problems

Statement 1: Let f(x)=sin(cos x) \ i n \ [0,pi/2] . Then f(x) is decreasing in [0,pi/2] Statement 2: cosx is a decreasing function AAx in [0,pi/2]

A function y=f(x) satisfies (x+1)f^(prime)(x)-2(x^2+x)f(x)=((e^x)^2)/((x+1)),AAx >-1. If f(0)=5, then f(x) is

Knowledge Check

  • If f(x)= sin^(2)x and g(f(x))=|sin x|, then g(x)=

    A
    `sqrt(x-1)`
    B
    `sqrtx`
    C
    `sqrt(x+1)`
    D
    `-sqrtx`
  • If f(x) + 2f(1 - x) = x^2 + 2, forall x in R , then f(x) is

    A
    a) `x^2 - 2`
    B
    b) 1
    C
    c) `1/3 (x-2)^2`
    D
    d) 1/2 (x - 2)
  • Let f(x)=sin x+cosx and g(x)=x^(2)-1 , then g{f(x)} is invertible if -

    A
    `-(pi)/(2) le x le 0`
    B
    `-(pi)/(2) le x le pi`
    C
    `0 le x le (pi)/(2)`
    D
    `-(pi)/(4) le x le (pi)/(4)`
  • Similar Questions

    Explore conceptually related problems

    Find the period of the function f(x) = sin((pi x)/3) + cos ((pi x)/2) .

    If f'(x)=(sin2x)/(cos^(2)2x)," then "f(x) =

    If f(x)={(2cos x -sin2x)/((pi-2x)^2),xlt=pi/2(e^(-cotx)-1)/(8x-4pi),x >pi/2 , then which of the following holds? (a) f is continuous at x=pi//2 (b) f has an irremovable discontinuity at x=pi//2 (c) f has a removable discontinuity at x=pi//2 (d)None of these

    If f(x)=sqrt(1-sin2x) , then f^(prime)(x) is equal to (a) -(cosx+sinx) ,for x in (pi/4,pi/2) (b) cosx+sinx ,for x in (0,pi/4) (c) -(cosx+sinx) ,for x in (0,pi/4) (d) cosx-sinx ,for x in (pi/4,pi/2)

    If f(x)={(sin{cosx}/(x-pi/2), x ne pi/2),(1, x=pi/2):} , where {.} denotes the fractional part of x, then f(x) is :