Home
Class 8
MATHS
The simplified form of the rational expr...

The simplified form of the rational expression `((x^(2))/(x^(2)-y^(2))-1)((x-y)/y+2)` is

A

`x/(x+y)`

B

`y/(x+y)`

C

`y/(x-y)`

D

`x/(x-y)`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \(\left(\frac{x^2}{x^2 - y^2} - 1\right)\left(\frac{x - y}{y} + 2\right)\), we can follow these steps: ### Step 1: Rewrite the expression We start with the expression: \[ \left(\frac{x^2}{x^2 - y^2} - 1\right)\left(\frac{x - y}{y} + 2\right) \] ### Step 2: Find a common denominator for the first part The first part is \(\frac{x^2}{x^2 - y^2} - 1\). To combine these terms, we need a common denominator: \[ \frac{x^2}{x^2 - y^2} - \frac{x^2 - y^2}{x^2 - y^2} = \frac{x^2 - (x^2 - y^2)}{x^2 - y^2} \] This simplifies to: \[ \frac{y^2}{x^2 - y^2} \] ### Step 3: Simplify the second part Now, we simplify the second part \(\frac{x - y}{y} + 2\): \[ \frac{x - y}{y} + 2 = \frac{x - y}{y} + \frac{2y}{y} = \frac{x - y + 2y}{y} = \frac{x + y}{y} \] ### Step 4: Combine the two parts Now we can combine the two simplified parts: \[ \frac{y^2}{x^2 - y^2} \cdot \frac{x + y}{y} \] ### Step 5: Multiply the fractions Multiplying the fractions gives us: \[ \frac{y^2(x + y)}{y(x^2 - y^2)} \] ### Step 6: Simplify the expression We can cancel \(y\) in the numerator and denominator: \[ \frac{y(x + y)}{x^2 - y^2} \] ### Step 7: Factor the denominator Recall that \(x^2 - y^2\) can be factored using the difference of squares: \[ x^2 - y^2 = (x + y)(x - y) \] ### Step 8: Final simplification Now substituting this back into our expression: \[ \frac{y(x + y)}{(x + y)(x - y)} \] We can cancel \(x + y\) from the numerator and denominator (assuming \(x + y \neq 0\)): \[ \frac{y}{x - y} \] ### Final Answer Thus, the simplified form of the given rational expression is: \[ \frac{y}{x - y} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MATRICES

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSEMENT SHEET-14|5 Videos
  • LINEAR INEQUALITIES

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESMENT SHEET -13|10 Videos
  • NUMBERS

    S CHAND IIT JEE FOUNDATION|Exercise Self Assessment Sheet|10 Videos

Similar Questions

Explore conceptually related problems

Simplify ((x-y)^(2))/(x^(2)-y^(2))

Q.If x be real,then find the range of the following rational expressions (i) (x^(2)+x+1)/(x^(2)+1) (i) y=(x^(2)-2x+9)/(x^(2)-2x-9)

Knowledge Check

  • Simplified form of the rational expression ( y + 4)/( y^(2) - 1) + ( y - 1)/( y^(2) - 3 y - 4) - ( y + 1)/( y^(2) - 5y + 4) is

    A
    `(y^(2) + 4 y - 16)/(( y - 4) (y^(2) - 1))`
    B
    `(y^(2) - 4 y - 16)/(( y - 4) (y^(2) - 1))`
    C
    `(y^(2) - 4 y + 16)/( ( y - 4) (y^(2) - 1))`
    D
    none of these
  • The simplified form of the expression ( x^(2) + x - 6)/( x^(2) - 5 x + 6) xx ( x^(3) - 27)/( x^(2) - 2 xy + 2y^(2)) xx ( x^(4) + 4 y^(4))/( x^(2) - 9) is

    A
    `((x^(2) + 3 x + 9) ( x^(2) + 2 xy + 2y^(2)))/( x - 3)`
    B
    `((x^(2) - 3 x + 9) ( x^(2) - 2 xy + 2y^(2)))/( x +3)`
    C
    `((x^(2) + 3 x + 9) ( x^(2) - 2 xy + 2y^(2)))/( x + 3)`
    D
    none of these
  • The simplest form of the expression x^(2) y^(2) (x-y) + y^(2) z^(2) (y-z) + z^(2) x^(2) ( z-x) is

    A
    `(x + y) (y + z) (z + x) (xy + yz + zx)`
    B
    `(x - y) (y - z) (z - x) (xy - yz - zx)`
    C
    `(x - y) (y + z) (z + x) (xy + yz + zx)`
    D
    `-(x - y) (y- z) (z - x) (xy + yz + zx)`
  • Similar Questions

    Explore conceptually related problems

    If x be real then find the range of the following rational expressions (i) y=(x^(2)+x+1)/(x^(2)+1) (ii) y=(x^(2)-2x+9)/(x^(2)+2x+9)

    Find the range of rational expression y =(x^(2) -x+4)/(x^(2) +x+4) is x is real.

    Simplify each of the following expressions: x^(2)(1-3y^(2))+x(xy^(2)-2x)-3y(y-4x^(2)y)

    The product of the rational expressions (x^2 - y^2)/(x^2 + 2xy + y^2) and (xy + y^2)/(x^2 - xy) is:

    Simplify: (3y)^(2)+x^(2)-(2y)^(2)