Home
Class 8
MATHS
Evaluate : sin theta cos theta - (sin ...

Evaluate : ` sin theta cos theta - (sin theta cos (90^(@) - theta) cos theta)/( sec (90^(@) - theta)) - (cos theta sin (90^(@) - theta) sin theta)/( cosec (90^(@) - theta))`

A

`-1`

B

2

C

0

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the expression \[ \sin \theta \cos \theta - \frac{\sin \theta \cos(90^\circ - \theta) \cos \theta}{\sec(90^\circ - \theta)} - \frac{\cos \theta \sin(90^\circ - \theta) \sin \theta}{\csc(90^\circ - \theta)}, \] we will follow these steps: ### Step 1: Simplify the first term The first term is simply \(\sin \theta \cos \theta\). ### Step 2: Simplify the second term We know that: - \(\cos(90^\circ - \theta) = \sin \theta\) - \(\sec(90^\circ - \theta) = \csc \theta\) So, the second term becomes: \[ -\frac{\sin \theta \sin \theta \cos \theta}{\csc \theta} = -\sin^2 \theta \cos \theta \cdot \sin \theta = -\sin^2 \theta \cos \theta. \] ### Step 3: Simplify the third term We also know that: - \(\sin(90^\circ - \theta) = \cos \theta\) - \(\csc(90^\circ - \theta) = \sec \theta\) Thus, the third term simplifies to: \[ -\frac{\cos \theta \cos \theta \sin \theta}{\sec \theta} = -\cos^2 \theta \sin \theta \cdot \cos \theta = -\cos^2 \theta \sin \theta. \] ### Step 4: Combine all terms Now we can combine all the terms: \[ \sin \theta \cos \theta - \sin^2 \theta \cos \theta - \cos^2 \theta \sin \theta. \] ### Step 5: Factor out common terms We can factor out \(\sin \theta \cos \theta\) from the expression: \[ \sin \theta \cos \theta \left(1 - \sin \theta - \cos \theta\right). \] ### Step 6: Use the Pythagorean identity Using the identity \(\sin^2 \theta + \cos^2 \theta = 1\), we can rewrite \(1 - \sin^2 \theta - \cos^2 \theta\) as: \[ \sin \theta \cos \theta \left(1 - 1\right) = \sin \theta \cos \theta \cdot 0 = 0. \] ### Final Result Thus, the value of the expression is: \[ \boxed{0}. \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • SOME APPLICATIONS OF TRIGONOMETRY

    S CHAND IIT JEE FOUNDATION|Exercise Self Assessment Sheet - 33 |10 Videos
  • SIMULTANEOUS LINEAR EQUATIONS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET|10 Videos
  • SQUARE ROOTS AND CUBE ROOTS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET-4|10 Videos

Similar Questions

Explore conceptually related problems

sin theta cos(90^(@)-theta)+cos theta sin(90^(@)-theta)

sin theta cos(90^@ -theta) +cos theta sin(90^@ -theta) = ?

Knowledge Check

  • The value of cos (270^(@) + theta) cos ( 90^(@) -theta) -sin (270^(@) - theta) cos theta is

    A
    0
    B
    `-1`
    C
    `1//2`
    D
    1
  • (cos(90^(@)-theta).sec(90^(@)-theta).tantheta)/(cosec(90^(@)-theta).sin(90^(@)-theta).cot(90^(@)-theta))=?

    A
    1
    B
    2
    C
    3
    D
    `-1`
  • Similar Questions

    Explore conceptually related problems

    Write the value of sintheta cos(90^(@)-theta)+costheta sin(90^(@)-theta).

    Prove the following: sin theta sin(90^(@)-theta)-cos theta cos(90^(@)-theta)=0

    Prove the following: sin theta sin(90^(@)-theta)-cos theta cos(90^(@)-theta)=0

    ((cos (90 ^ (@)) - theta) sin (90 ^ (@) - theta)) / (tan (90 ^ (@) - theta))

    Show that (1)/( 1 + cos (90^(@) - theta)) + (1)/(1 - cos (90^(@) - theta )) = 2 cosec ^(2) (90 ^(@) - theta )

    Prove that :(sin theta cos(90^(0)-theta)cos theta)/(sin(90^(0)-theta))+(cos theta sin(90^(0)-theta)sin theta)/(cos(90^(@)-theta))=1csc^(2)(90^(@)-theta)-tan^(2)theta=cos^(2)(90^(@)-theta)+cos^(2)theta