Home
Class 8
MATHS
Evaluate : sin theta cos theta - (sin ...

Evaluate : ` sin theta cos theta - (sin theta cos (90^(@) - theta) cos theta)/( sec (90^(@) - theta)) - (cos theta sin (90^(@) - theta) sin theta)/( cosec (90^(@) - theta))`

A

`-1`

B

2

C

0

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the expression \[ \sin \theta \cos \theta - \frac{\sin \theta \cos(90^\circ - \theta) \cos \theta}{\sec(90^\circ - \theta)} - \frac{\cos \theta \sin(90^\circ - \theta) \sin \theta}{\csc(90^\circ - \theta)}, \] we will follow these steps: ### Step 1: Simplify the first term The first term is simply \(\sin \theta \cos \theta\). ### Step 2: Simplify the second term We know that: - \(\cos(90^\circ - \theta) = \sin \theta\) - \(\sec(90^\circ - \theta) = \csc \theta\) So, the second term becomes: \[ -\frac{\sin \theta \sin \theta \cos \theta}{\csc \theta} = -\sin^2 \theta \cos \theta \cdot \sin \theta = -\sin^2 \theta \cos \theta. \] ### Step 3: Simplify the third term We also know that: - \(\sin(90^\circ - \theta) = \cos \theta\) - \(\csc(90^\circ - \theta) = \sec \theta\) Thus, the third term simplifies to: \[ -\frac{\cos \theta \cos \theta \sin \theta}{\sec \theta} = -\cos^2 \theta \sin \theta \cdot \cos \theta = -\cos^2 \theta \sin \theta. \] ### Step 4: Combine all terms Now we can combine all the terms: \[ \sin \theta \cos \theta - \sin^2 \theta \cos \theta - \cos^2 \theta \sin \theta. \] ### Step 5: Factor out common terms We can factor out \(\sin \theta \cos \theta\) from the expression: \[ \sin \theta \cos \theta \left(1 - \sin \theta - \cos \theta\right). \] ### Step 6: Use the Pythagorean identity Using the identity \(\sin^2 \theta + \cos^2 \theta = 1\), we can rewrite \(1 - \sin^2 \theta - \cos^2 \theta\) as: \[ \sin \theta \cos \theta \left(1 - 1\right) = \sin \theta \cos \theta \cdot 0 = 0. \] ### Final Result Thus, the value of the expression is: \[ \boxed{0}. \]
Promotional Banner

Topper's Solved these Questions

  • SOME APPLICATIONS OF TRIGONOMETRY

    S CHAND IIT JEE FOUNDATION|Exercise Self Assessment Sheet - 33 |10 Videos
  • SIMULTANEOUS LINEAR EQUATIONS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET|10 Videos
  • SQUARE ROOTS AND CUBE ROOTS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET-4|10 Videos

Similar Questions

Explore conceptually related problems

sin theta cos(90^(@)-theta)+cos theta sin(90^(@)-theta)

sin theta cos(90^@ -theta) +cos theta sin(90^@ -theta) = ?

Write the value of sintheta cos(90^(@)-theta)+costheta sin(90^(@)-theta).

Prove the following: sin theta sin(90^(@)-theta)-cos theta cos(90^(@)-theta)=0

Prove the following: sin theta sin(90^(@)-theta)-cos theta cos(90^(@)-theta)=0

((cos (90 ^ (@)) - theta) sin (90 ^ (@) - theta)) / (tan (90 ^ (@) - theta))

Show that (1)/( 1 + cos (90^(@) - theta)) + (1)/(1 - cos (90^(@) - theta )) = 2 cosec ^(2) (90 ^(@) - theta )

Prove that :(sin theta cos(90^(0)-theta)cos theta)/(sin(90^(0)-theta))+(cos theta sin(90^(0)-theta)sin theta)/(cos(90^(@)-theta))=1csc^(2)(90^(@)-theta)-tan^(2)theta=cos^(2)(90^(@)-theta)+cos^(2)theta

The value of cos (270^(@) + theta) cos ( 90^(@) -theta) -sin (270^(@) - theta) cos theta is

(cos(90^(@)-theta).sec(90^(@)-theta).tantheta)/(cosec(90^(@)-theta).sin(90^(@)-theta).cot(90^(@)-theta))=?

S CHAND IIT JEE FOUNDATION-SOME APPLICATIONS OF TRIGONOMETRY-Unit Test - 6
  1. If tan x = (3)/( 4) , 0 lt x lt 90^(@) , then what is value of sin x ...

    Text Solution

    |

  2. What is the expression (tan x )/( 1 + sec x) - (tan x)/( 1 - sec x) e...

    Text Solution

    |

  3. If tan theta = 1 and sin phi = (1)/(sqrt(2)), and theta, phi in[0,pi/...

    Text Solution

    |

  4. If cos theta = (3)/(5) , then the value of (sin theta - tan theta + ...

    Text Solution

    |

  5. Given x cos theta + y sin theta = 2 and x cos theta - y sin theta ...

    Text Solution

    |

  6. Which of the following is /are the value (s) of the the expression ? ...

    Text Solution

    |

  7. If sin A = (2 m n)/( m^(2) + n^(2)) , What is the value of tan A ?

    Text Solution

    |

  8. If sec^(2) theta + tan^(2) theta = (5)/(3) and 0 le theta le (pi)/(2)...

    Text Solution

    |

  9. Evaluate : (5 sin ^(2) 30^(@) + cos ^(2) 45^(@) + 4 tan ^(2) 60^(@))/(...

    Text Solution

    |

  10. Evaluate : ( 5 cos ^(2) 60^(@) + 4 sec^(2) 30^(@) - tan^(2) 45^(@))/( ...

    Text Solution

    |

  11. The value of sin^(2) 1^(@) + sin^(2) 2^(@) + sin^(2) 3^(@)+ . . . . +...

    Text Solution

    |

  12. If tan 2 A = cot ( A - 60^(@)) , where 2 A is an acute angle then th...

    Text Solution

    |

  13. Evaluate : ( 2 cos 53^(@) cosec 37^(@))/(( cos^(2) 29^(@) + cos^(2) 61...

    Text Solution

    |

  14. Evaluate : sin theta cos theta - (sin theta cos (90^(@) - theta) co...

    Text Solution

    |

  15. Using trigonometric identities 5 cosec ^(2) theta - 5 cot ^(2) theta ...

    Text Solution

    |

  16. The angle of elevation of the top of a tower at a horizontal distanc...

    Text Solution

    |

  17. a person aims at a bird on top of a 5 metre high pole with an elevati...

    Text Solution

    |

  18. Horizontal distance between two pillars of different heights is 60 m...

    Text Solution

    |

  19. The angles of elevation of the top of a tower h metre tall from two di...

    Text Solution

    |

  20. A radio transmitter antenna of height 100 m stands at the top of a ta...

    Text Solution

    |