Home
Class 7
MATHS
If P = m^(2) - n^(2), Q = n + m, R = 2m...

If ` P = m^(2) - n^(2), Q = n + m, R = 2m + 2n + m^(2),` then P + 2Q - R is equal to

A

`m^(2)`

B

`-m^(2)`

C

`n^(2)`

D

`-n^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( P + 2Q - R \) given the values of \( P \), \( Q \), and \( R \): 1. **Identify the values**: - \( P = m^2 - n^2 \) - \( Q = n + m \) - \( R = 2m + 2n + m^2 \) 2. **Substitute the values into the expression**: \[ P + 2Q - R = (m^2 - n^2) + 2(n + m) - (2m + 2n + m^2) \] 3. **Expand the expression**: - First, calculate \( 2Q \): \[ 2Q = 2(n + m) = 2n + 2m \] - Now substitute this back into the expression: \[ P + 2Q - R = (m^2 - n^2) + (2n + 2m) - (2m + 2n + m^2) \] 4. **Remove the brackets**: \[ = m^2 - n^2 + 2n + 2m - 2m - 2n - m^2 \] 5. **Combine like terms**: - The \( m^2 \) terms: \[ m^2 - m^2 = 0 \] - The \( n \) terms: \[ -n^2 \quad (\text{only } -n^2 \text{ remains}) \] - The \( m \) terms: \[ 2m - 2m = 0 \] - The \( n \) terms: \[ 2n - 2n = 0 \] 6. **Final result**: \[ P + 2Q - R = -n^2 \] Thus, the final answer is \( -n^2 \).
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • ALGEBRAIC EXPRESSIONS

    MTG IIT JEE FOUNDATION|Exercise EXERCISE (MATCHING)|2 Videos
  • ALGEBRAIC EXPRESSIONS

    MTG IIT JEE FOUNDATION|Exercise EXERCISE (ASSERTION AND REASON)|5 Videos
  • ALGEBRAIC EXPRESSIONS

    MTG IIT JEE FOUNDATION|Exercise EXERCISE (MULTIPLE CHOICE QUESTION) (LEVEL - 1)|35 Videos
  • COMPARING QUANTITIES

    MTG IIT JEE FOUNDATION|Exercise Olympaid/HOTS Corner|20 Videos

Similar Questions

Explore conceptually related problems

If P=-(x-2)m, Q =-2(y+1) and R = -x + 2y, then find a, when P + Q + R = ax

Statement 1: "Delta"=|m y+n z m q+n r m b+n c k z-m x k r-m p k c-m a-n x-k y-n p-k q-n a-k b| is equal to 0. Statement 2: The value of skew symmetric matrix of order 3 is zero.

Knowledge Check

  • Suppose p in N, n=""^(p)C_(2) and m=""^(n)C_(2) . If 4m : n = 18 : 1, then p is equal to

    A
    11
    B
    9
    C
    7
    D
    5
  • If S_(n) = n^(2) p and S_(m) = m^(2) p, m ne n , in A.P., then S_(p) is

    A
    `p^(2)`
    B
    `p^(3)`
    C
    `p^(4)`
    D
    none
  • If ""^(m+n)P_(2)=90 and ""^(m-n)P_(2)=30 , then (m, n) is equal to

    A
    `(12,8)`
    B
    `(8,2)`
    C
    `(6, 4)`
    D
    `(7,4)`
  • Similar Questions

    Explore conceptually related problems

    If in an A.P.S_(n)=n^(2)p and S_(m)=m^(2)p, then S_(p) is equal to

    If in an A.P., S_n=n^2p and S_m=m^2p , where S_r denotes the sum of r terms of the A.P., then S_p is equal to 1/2p^3 (b) m n\ p (c) p^3 (d) (m+n)p^2

    Find the value of ( a^( m^2 - n^2 ))^ (( m^2 + mn + n^2 )/( m + n )) times ( a^( n^2 - p^2 ))^ (( n^2 + np + p^2 )/( n + p ))times ( a^( p^2 - m^2 ))^ (( p^2 + mp + m^2 )/( p + m )) is ( a ) 0 ( b ) 1 ( c ) a^3 ( d ) a

    In m, n , p are in A.P. and m^n = p^m = n! + p, m, n, p in N , then the value of m,n, p is, where 2 < m, n < p < 10 :

    If P = {2 m : m in N} and Q = {2^(m) : m in N} , where m is positive, then :