Home
Class 12
MATHS
In the quadratic equation ax^2 + bx + c ...

In the quadratic equation `ax^2 + bx + c = 0`. if `delta = b^2-4ac` and `alpha+beta , alpha^2+beta^2 , alpha^3+beta^3` are in G.P. and `alpha,beta` are the roots of `ax^2 + bx + c =0`

A

`Delta!=0`

B

`c=0`

C

`cb!=0`

D

`Delta=0`

Text Solution

Verified by Experts

The correct Answer is:
D

`(alpha^(2)+beta^(2))=(alpha+beta)(alpha^(3)+beta^(3))`
`implies{(alpha+beta)^(2)-2alpha beta}^(2)=(alpha+beta){(alpha+beta)^(2)-2alpha beta(alpha +beta)}`
`=((b^(2))/(a^(2))-(2c)/a)^(2)=(-b/a)((-b^(3))/(a^(3))+(3bc)/(a^(2)))`
`implies((b^(2)-2ac)/(a^(2)))^(2)=((-b)/a)((-b^(3)+3abc)/(a^(3)))`
`implies4a^(2)c^(2)=acb^(2)`
`impliesac(b^(2)-4ac)=0`
As `a!=0`
`impliesc Delta=0`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • THEORY OF EQUATIONS

    ARIHANT MATHS|Exercise Exercise (Subjective Type Questions)|24 Videos
  • THE STRAIGHT LINES

    ARIHANT MATHS|Exercise The Straight Lines Exercise 8 : (Questions Asked in Previous 13 years Exams)|1 Videos
  • THREE DIMENSIONAL COORDINATE SYSTEM

    ARIHANT MATHS|Exercise Three Dimensional Coordinate System Exercise 12 : Question Asked in Previous Years Exam|2 Videos

Similar Questions

Explore conceptually related problems

Let -pi/6 beta_1 and alpha_2 >beta_2 , then alpha_1 + beta_2 equals:

If alpha, beta are the roots of the quadratic equation x^2 + bx - c = 0 , the equation whose roots are b and c , is a. x^(2)+alpha x- beta=0 b. x^(2)-[(alpha +beta)+alpha beta]x-alpha beta( alpha+beta)=0 c. x^(2)+[(alpha + beta)+alpha beta]x+alpha beta(alpha + beta)=0 d. x^(2)+[(alpha +beta)+alpha beta)]x -alpha beta(alpha +beta)=0

ax^2 + bx + c = 0(a > 0), has two roots alpha and beta such alpha 2, then

If alpha and beta are the roots of x^2+x+1=0 , then alpha^16 + beta^16 =

If sin (alpha+beta)=1, sin (alpha-beta)=1/2 , then tan (alpha+ 2beta). tan (2 alpha+beta) is equal to :

If alpha and beta are the roots of 4x^2 + 3x + 7 = 0 then the value of alpha beta

If tan (alpha- beta)= (sin 2 beta)/(5-cos 2 beta) , find tan alpha: tan beta .

If alpha and beta satisfying 2 sec2 alpha = tan beta + cot beta , then alpha+beta =

If 2 tan beta+cot beta= tan alpha , prove that cot beta= 2 tan (alpha-beta) .

If alpha and beta (alpha lt beta) are the roots of the equation x^(2) + bx + c = 0 , where c lt 0 lt b , then