Home
Class 12
MATHS
Prove that .^(1)P(1)+2*.^(2)P(2)+3*.^(...

Prove that
`.^(1)P_(1)+2*.^(2)P_(2)+3*.^(3)P_(3)+ . . .+n*.^(n)P_(n)=.^(n+1)P_(n+1)-1`.

Text Solution

Verified by Experts

The correct Answer is:
`x=n+3`

We have, `.^(n)C_(n-r)+3^(n)C_(n-r+1)+3^(n)C_(n-r+2)+.^(n)C_(n-r+3)=.^(n)C_(r)`
`hArr (.^(n)C_(n-r)+.^(n)C_(n-r+1))+2(.^(n)C_(n-r+1)+.^(n)C_(n-r+2))+(.^(n)C_(n-r+2)+.^(n)C_(n-r+3))=.^(x)C_(r)`
`hArr.^(n+1)C_(n-r+1)+2^(2N=1)C_(n-r+2)+.^(n+1)C_(n-r+3)=.^(x)C_(r)`
`hArr(.^(n+1)C_(n-r+1)+.^(n+1)C_(n-r+2))+(.^(n+1)C_(n-r+2)+.^(n+1)C_(n-r+3))=.^(x)C_(r)`
`hArr.^(n+2)C_(n-r+2)+.^(n+2)C_(n-r+3)=.^(x)C_(r)`
`hArr .^(n+3)C_(n-r+3)=.^(x)C_(r)`
`hArr .^(n+r)C_(r)+.^(x)C_(r)" "[because .^(n)C_(r)=.^(n)C_(n-r)]`
Hence, `x=n+3`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • PERMUTATIONS AND COMBINATIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|28 Videos
  • PERMUTATIONS AND COMBINATIONS

    ARIHANT MATHS|Exercise Exercise (Statement I And Ii Type Questions)|12 Videos
  • PARABOLA

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|35 Videos
  • PROBABILITY

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|55 Videos

Similar Questions

Explore conceptually related problems

Prove that 1+1* ""^(1)P_(1)+2* ""^(2)P_(2)+3* ""^(3)P_(3) + … +n* ""^(n)P_(n)=""^(n+1)P_(n+1).

Solve the equation 3 ^(x+1)C_(2)+ ^(2)P_(2)x=4^(x)P_(2),x in N .

If .^(n)P_(5)=20 .^(n)P_(3) , find the value of n.

If .^(m+n) P_(2)=56 and .^(m-n)P_(3)=24 , then (.^(m)P_(3))/(.^(n)P_(2)) equals

If the lengths of the perpendiculars from the vertices of a triangle ABC on the opposite sides are p_(1), p_(2), p_(3) then prove that (1)/(p_(1)) + (1)/(p_(2)) + (1)/(p_(3)) = (1)/(r) = (1)/(r_(1)) + (1)/(r_(2)) + (1)/(r_(3)) .

If .^(2n+1)P_(n-1):^(2n-1)P_(n)=7:10 , then .^(n)P_(3) equals

If a_1, a_2,a_3,..........., a_n be an A.P. of non-zero terms, prove that : 1/(a_1 a_2)+1/(a_2 a_3)+ ............. + 1/(a_(n-1) a_n)= (n-1)/(a_1 a_n) .

If A = [(1,1,1),(1,1,1),(1,1,1)] , prove that A^(n) =[(3^(n-1),3^(n-1),3^(n-1)),(3^(n-1),3^(n-1),3^(n-1)),(3^(n-1),3^(n-1),3^(n-1))] , n in N

Prove by the principle of mathematical induction. 1.3+2.3^(2)+3.3^(3)+. . .+n.3^(n)=((2n-1)^(n+1)+3)/(4),n in N .

Find n if ""^(n-1)P_(3) : ""^(n)P_(4) = 1:16 .