Home
Class 12
MATHS
If a=3hati-2hatj+hatk,b=2hati-4hatj-3hat...

If `a=3hati-2hatj+hatk,b=2hati-4hatj-3hatk and c=-hati+2hatj+2hatk`, then a+b+c is

A

`3hati-4hatj`

B

`3hati+4hatj`

C

`4hati-4hatj`

D

`4hati+4hatj`

Text Solution

Verified by Experts

The correct Answer is:
C

`a+b+c=(3+2-1)hati+(-2-4+2)hatj+(1-3+2)hatk`
`=4hati-4hatj`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • VECTOR ALGEBRA

    ARIHANT MATHS|Exercise VECTOR ALGEBRA EXERCISES 1: Single Option Correct Type Questions|1 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS|Exercise Exercise (More Than One Correct Option Type Questions)|7 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS|Exercise Exercise For Session 3|11 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

If a=hati+2hatj+3hatk,b=-hati+2hatj+hatk and c=3hati+hatj , then the unit vector along its resultant is

Find the volume of the parallelopiped whose edges are represented by a=2hati-3hatj+4hatk,b=hati+2hatj-hatk and c=3hati-hatj+2hatk .

If a=hati+2hatj+3hatk,b=-hati+2hatj+hatk and c=3hati+hatj . If (a+tb) bot c , then t is equal to

Consider the equation of the straight lines given by : L_1:vecr=(hati+2hatj+hatk)+lambda(hati-hatj+hatk) L_2:vecr=(2hati-hatj-hatk)+mu(2hati+hatj+2hatk) If veca_1=hati+2hatj+hatk, vecb_1=hati-hatj+hatk, veca_2=2hati-hatj-hatk, vecb_2=2hati+hatj+2hatk , then find : (vecb_1xxvecb_2)*(veca_2-veca_1)

Consider the equation of the straight lines given by : L_1:vecr=(hati+2hatj+hatk)+lambda(hati-hatj+hatk) L_2:vecr=(2hati-hatj-hatk)+mu(2hati+hatj+2hatk) If veca_1=hati+2hatj+hatk, vecb_1=hati-hatj+hatk, veca_2=2hati-hatj-hatk, vecb_2=2hati+hatj+2hatk , then find : veca_2-veca_1

Consider the equation of the straight lines given by : L_1:vecr=(hati+2hatj+hatk)+lambda(hati-hatj+hatk) L_2:vecr=(2hati-hatj-hatk)+mu(2hati+hatj+2hatk) If veca_1=hati+2hatj+hatk, vecb_1=hati-hatj+hatk, veca_2=2hati-hatj-hatk, vecb_2=2hati+hatj+2hatk , then find : vecb_2-vecb_1

Consider the equation of the straight lines given by : L_1:vecr=(hati+2hatj+hatk)+lambda(hati-hatj+hatk) L_2:vecr=(2hati-hatj-hatk)+mu(2hati+hatj+2hatk) If veca_1=hati+2hatj+hatk, vecb_1=hati-hatj+hatk, veca_2=2hati-hatj-hatk, vecb_2=2hati+hatj+2hatk , then find : vecb_1xxvecb_2

Consider the equation of the straight lines given by : L_1:vecr=(hati+2hatj+hatk)+lambda(hati-hatj+hatk) L_2:vecr=(2hati-hatj-hatk)+mu(2hati+hatj+2hatk) If veca_1=hati+2hatj+hatk, vecb_1=hati-hatj+hatk, veca_2=2hati-hatj-hatk, vecb_2=2hati+hatj+2hatk , then find : veca_1xxveca_2

Consider the equation of the straight lines given by : L_1:vecr=(hati+2hatj+hatk)+lambda(hati-hatj+hatk) L_2:vecr=(2hati-hatj-hatk)+mu(2hati+hatj+2hatk) If veca_1=hati+2hatj+hatk, vecb_1=hati-hatj+hatk, veca_2=2hati-hatj-hatk, vecb_2=2hati+hatj+2hatk , then find : the shortest distance between L_1 and L_2 .

Show that the vectors hati-3hatj+2hatk,2hati-4hatj-hatk and 3hati+2hatj-hatk and linearly independent.