Home
Class 12
MATHS
Let f(x) = {{:(-2 sin x,"for",-pi le x l...

Let `f(x) = {{:(-2 sin x,"for",-pi le x le - (pi)/(2)),(a sin x + b,"for",-(pi)/(2) lt x lt (pi)/(2)),(cos x,"for",(pi)/(2) le x le pi):}`.
If `f` is continuous on `[-pi, pi)`, then find the values of `a` and `b`.

Text Solution

Verified by Experts

The correct Answer is:
a = -1, b = 1
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT MATHS|Exercise Exercise For Session 3|5 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT MATHS|Exercise Exercise For Session 4|7 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT MATHS|Exercise Exercise For Session 1|5 Videos
  • COMPLEX NUMBERS

    ARIHANT MATHS|Exercise Complex Number Exercise 8|3 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos

Similar Questions

Explore conceptually related problems

If f(x)={(mx+1" , if "xle(pi)/(2)),(sinx+n" , if "xgt(pi)/(2)):} , is continuous at x= (pi)/(2) , then

Let f(x)=min{1,cos x,1-sinx}, -pi le x le pi , Then, f(x) is

Differentiate (sin x - cos x)^(sin x -cos x) , (-pi)/(4) lt x lt (3pi)/4

The values of a and b so that the function f(x) = {{:(x + a sqrt(2) sin x",",0 le x lt pi//4),(2 x cot x + b",",pi//4 le x le pi//2),(a cos 2 x - b sin x",",pi//2 lt x le pi):} is continuous for x in [0, pi] , are

If f(x) ={{:(-x=(pi)/(2),xle -(pi)/(2)), (- cos x, -(pi)/(2)lt x ,le 0):} ,( x-1, 0 lt x le 1),("in"x, x gt1):}

Let f(x) = sin x and " g(x)" = {{:(max {f(t)","0 le x le pi},"for", 0 le x le pi),((1-cos x)/(2)",","for",x gt pi):} Then, g(x) is

Prove that cos^-1 ((sin x + cos x )/(sqrt2)) = x - (pi/4), (pi/4) le x le ((5pi)/4)

Express tan^(-1) (( cos x )/( 1 - sin x )) , - (pi)/(2) lt x lt (pi)/(2) in the simplest form.

f(x) = cos x and H(x) = {{:(min{f(t), 0 le t lt x},0 le x le (pi)/(2)) ,( (pi)/(2)-x,(pi)/(2) lt x le 3):} then

If tan x = -(4)/(3), (pi)/(2) lt x lt pi , then find the value of sin(x/2), cos(x/2) and tan(x/2) .