Home
Class 12
MATHS
If f(x) = {{:("sin"(pix)/(2)",",x lt 1),...

If `f(x) = {{:("sin"(pix)/(2)",",x lt 1),([x]",",x ge 1):}`, where [x] denotes the greatest integer function, then

A

f(x) is continuous at x = 1

B

f(x) is discontinuous at x = 1

C

`f(1^(+)) = 0`

D

`f(1^(-)) = -1`

Text Solution

Verified by Experts

The correct Answer is:
A
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT MATHS|Exercise Exercise (More Than One Correct Option Type Questions)|26 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT MATHS|Exercise Exercise (Statement I And Ii Type Questions)|11 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT MATHS|Exercise Exercise For Session 7|10 Videos
  • COMPLEX NUMBERS

    ARIHANT MATHS|Exercise Complex Number Exercise 8|3 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos

Similar Questions

Explore conceptually related problems

Discuss the continuity of f(x) in [0, 2], where f(x) = {{:([cos pi x]",",x le 1),(|2x - 3|[x - 2]",",x gt 1):} where [.] denotes the greatest integral function.

If f(x) = {{:(|1-4x^(2)|",",0 le x lt 1),([x^(2)-2x]",",1 le x lt 2):} , where [] denotes the greatest integer function, then

If f(x)={{:(,x[x], 0 le x lt 2),(,(x-1)[x], 2 le x lt 3):} where [.] denotes the greatest integer function, then continutity and diffrentiability of f(x)

Solve the equation [x]=x, where [] denote the greatest integer function.

If f(x) = {{:([cos pi x]",",x le 1),(2{x}-1",",x gt 1):} , where [.] and {.} denotes greatest integer and fractional part of x, then a. f'(1^(-)) = 2 b. f'(1^(+)) = 2 c. f'(1^(-)) = -2 d. f'(1^(+)) = 0

If f(x)=(sin([x]pi))/(x^2+x+1) , where [dot] denotes the greatest integer function, then

f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.

If f(x) =[ sin ^(-1)(sin 2x )] (where, [] denotes the greatest integer function ), then

If f(x)=e^(sin(x-[x])cospix) , where [x] denotes the greatest integer function, then f(x) is

f(x)=log(x-[x]) , where [*] denotes the greatest integer function. find the domain of f(x).