Home
Class 12
MATHS
If f(x) =[ sin ^(-1)(sin 2x )] (where, [...

If `f(x) =[ sin ^(-1)(sin 2x )]` (where, [] denotes the greatest integer function ), then

A

`int_(0)^(pi//2) f(x) dx=(pi)/(2) - sin ^(-1)(sin 1)`

B

`f(x)` is periodic with period `pi`

C

`underset(x rarr(pi+)/(2))(lim) f(x)=-1`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
A, B, C
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise (Passage Based Questions)|17 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise (Matching Type Questions)|4 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Definite intefral Exercise 1 : Single Option Correct Type Questions|1 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

If f(x)=e^(sin(x-[x])cospix) , where [x] denotes the greatest integer function, then f(x) is

The value of I=int_(-pi//2)^(pi//2) (cos x dx )/(1+2[ sin^(-1)(sin x)]) (where ,[.] denotes greatest integer function ) is …

f(x)= cosec^(-1)[1+sin^(2)x] , where [*] denotes the greatest integer function. then range of f(x) is

f(x)=sin^(-1)((2-3[x])/4) , which [*] denotes the greatest integer function.

If f(x)=(sin([x]pi))/(x^2+x+1) , where [dot] denotes the greatest integer function, then

f(x)=sin^(-1)[2x^(2)-3] , where [*] denotes the greatest integer function. Find the domain of f(x).

Let f(x)=sqrt([sin 2x] -[cos 2x]) (where I I denotes the greatest integer function) then the range of f(x) will be

If f: R rarr R is a function defined by: f(x) = [x] cos((2x-1)/2)pi , where [x] denotes the greatest integer function, then 'f' is

If [sin^-1 (cos^-1(sin^-1 (tan^-1 x)))]=1 , where [*] denotes the greatest integer function, then x in

If [sin x]+[sqrt(2) cos x]=-3 , x in [0,2pi] , (where ,[.] denotes the greatest integer function ), then