Home
Class 12
MATHS
The total number of distinct x in R for...

The total number of distinct x `in` R for which
`|{:(x,x^(2),1+x^(3)),(2x,4x^(2),1+8x^(3)),(3x,9x^(2),1+27x^(3)):}|=10` is

Text Solution

Verified by Experts

The correct Answer is:
1
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise (Single Integer Answer Type Questions)|4 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

The number of distinct real roots of x^(4) - 4x^(3) + 12 x^(2) + x - 1 = 0 is __________.

Solve for x, |{:(4x,6x+2,8x+1),(6x+2,9x+3,12x),(8x+1,12x,16x+2):}| =0

Knowledge Check

  • If x, y, z are all distinct and |(x,x^(2),1+x^(3)),(y,y^(2),1+y^(3)),(z,z^(2),1+z^(3))|=0 then value of x y z is :

    A
    `-1`
    B
    `-2`
    C
    1
    D
    2
  • Let f:R rarr R be defined by f(x)={{:(2x, xgt3),(x^2,1lexlt3),(3x,xle1):} Then f(-1)+f(2) +f(4) is

    A
    9
    B
    14
    C
    5
    D
    None of these
  • Similar Questions

    Explore conceptually related problems

    The number of values of x for which the matrix A=[(3-x,2,2),(2,4-x,1),(-2,-4,-1-x)] is singular, is

    if |{:(1,,x,,x^(2)),(x,,x^(2),,1),(x^(2),,1,,x):}|=3 then find the value of Delta_(c)=|{:(x^(3)-1,,0,,x-x^(4)),(0,,x-x^(4),,x^(3)-1),(x-x^(4)-1,,x^(3)-1,,0):}|

    Solve |x^(2)-3x-4|=9-|x^(2)-1|

    Value of |{:(1+x_(1),,1+x_(1)x,,1+x_(1)x^(2)),(1+x_(2),,1+x_(2)x,,1+x_(2)x^(2)),(1+x_(3),,1+x_(3)x,,1+x_(3)x^(2)):}| depends upon

    The term independent of x in expansion of ((x+1)/(x^(2/3)-x^(1/3)+1)-(x-1)/(x-x^(1/2)))^10 is (1) 120 (2) 210 (3) 310 (4) 4

    The set of all values of lambda for which the system of linear equations 2x_(1)-2x_(2)+x_(3)=lambdax_(1) 2x_(1)-3x_(2)+2x_(3)=lambdax_(2) -x_(1)+2x_(2)=lambdax_(3) has a non-trivial solution,