Home
Class 12
MATHS
sum(r=0)^n(-1)^r .^n Cr[1/(2^r)+3/(2^(2r...

`sum_(r=0)^n(-1)^r .^n C_r[1/(2^r)+3/(2^(2r))+7/(2^(3r))+(15)/(2^(4r))+ .....mt e r m s]= (2^(m n)-1)/(2^(m n)(2^n-1))`

A

-6

B

-3

C

3

D

Cannot be determined

Text Solution

Verified by Experts

The correct Answer is:
d

`because sum_(r=0)^(n) (-1)^(r) ""^(n)C_(r)[((1)/(2))^(r) + ((3)/(4))^(r) + ((7)/(8))^(r) +..."upto m terms"]`
` = (1 - (1)/(2))^(n) + (1 - (3)/(4))^(n) + (1 - (7)/(8))^(n) +... "upto m terms" ]`
` (1)/(2^(n)) + (1)/(2^(2n)) + (1)/(2^(3n)) + ..." upto m terms" `
` = ((1)/(2^(n))[1-((1)/(2^(n)))^(m)])/((1- (1)/(2^(n))) )= ((1)/(2^(n)-1))(1-(1)/(2^(mn)))`
` therefore f (n) = (1)/(2^(n) -1)`
` therefore int_(-3)^(3) f(x^(3) " In x) * dt " (x^(3) ` in x)
`=int _(-3) ^(3) (1)/((2^(x^(3)"In x")-1))*(3x^(2) " In " x + x^(2))dx`
Since , In x cannot be defined for ` x lt 0 `
` therefore ` Above integral cannot be calculated .
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • BIONOMIAL THEOREM

    ARIHANT MATHS|Exercise Exercise (More Than One Correct Option Type Questions)|15 Videos
  • BIONOMIAL THEOREM

    ARIHANT MATHS|Exercise Exercise (Passage Based Questions)|21 Videos
  • BIONOMIAL THEOREM

    ARIHANT MATHS|Exercise Exercise For Session 4|14 Videos
  • AREA OF BOUNDED REGIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|23 Videos
  • CIRCLE

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|16 Videos

Similar Questions

Explore conceptually related problems

Evaluate sum_(r=1)^(n-1) cos^(2) ((rpi)/(n)) .

sum_(r=1)^(n) {sum_(r1=0)^(r-1) ""^(n)C_(r) ""^(r)C_(r_(1)) 2^(r1)} is equal to

The vaule of sum_(r=0)^(n-1) (""^(C_(r))/(""^(n)C_(r) + ""^(n)C_(r +1))) is equal to

The sum sum_(r=0)^n (r+1) (C_r)^2 is equal to :

Prove that sum_(r=0)^n^n C_rsinr xcos(n-r)x=2^(n-1)sin(n x)dot

If sum_(r=1)^n t_r=n/8(n+1)(n+2)(n+3), then find sum_(r=1)^n1/(t_r)dot

Statement-1: sum_(r =0)^(n) (r +1)""^(n)C_(r) = (n +2) 2^(n-1) Statement -2: sum_(r =0)^(n) (r+1) ""^(n)C_(r) x^(r) = (1 + x)^(n) + nx (1 + x)^(n-1)

If a_(n) = sum_(r=0)^(n) (1)/(""^(n)C_(r)) , find the value of sum_(r=0)^(n) (r)/(""^(n)C_(r))

Prove that: sum_(r=0)^(n) 3^( r) ""^(n)C_(r) = 4^(n) .

Prove that "^nC_r+2 ^(n)C_(r-1)+ ^(n)C_(r-2) = ^(n+2)C_r .