Home
Class 14
MATHS
If sqrt(x) + (1)/(sqrt(x)) = 2sqrt(2), t...

If `sqrt(x) + (1)/(sqrt(x)) = 2sqrt(2)`, then `x^(2) + (1)/(x^(2))` is equal to :

A

34

B

64

C

36

D

32

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sqrt{x} + \frac{1}{\sqrt{x}} = 2\sqrt{2} \) and find \( x^2 + \frac{1}{x^2} \), we can follow these steps: ### Step 1: Introduce a substitution Let \( y = \sqrt{x} \). Then, the equation becomes: \[ y + \frac{1}{y} = 2\sqrt{2} \] ### Step 2: Square both sides Now, we square both sides of the equation: \[ \left(y + \frac{1}{y}\right)^2 = (2\sqrt{2})^2 \] This simplifies to: \[ y^2 + 2 + \frac{1}{y^2} = 8 \] ### Step 3: Rearrange the equation Now, we can rearrange the equation to isolate \( y^2 + \frac{1}{y^2} \): \[ y^2 + \frac{1}{y^2} = 8 - 2 \] \[ y^2 + \frac{1}{y^2} = 6 \] ### Step 4: Relate back to \( x \) Since \( y = \sqrt{x} \), we have: \[ y^2 = x \quad \text{and} \quad \frac{1}{y^2} = \frac{1}{x} \] Thus: \[ x^2 + \frac{1}{x^2} = (y^2)^2 + \left(\frac{1}{y^2}\right)^2 \] ### Step 5: Use the identity We can use the identity: \[ a^2 + b^2 = (a + b)^2 - 2ab \] where \( a = y^2 \) and \( b = \frac{1}{y^2} \). We already know \( y^2 + \frac{1}{y^2} = 6 \) and \( ab = 1 \): \[ x^2 + \frac{1}{x^2} = (y^2 + \frac{1}{y^2})^2 - 2 \] Substituting the known values: \[ x^2 + \frac{1}{x^2} = 6^2 - 2 = 36 - 2 = 34 \] ### Final Result Thus, the value of \( x^2 + \frac{1}{x^2} \) is: \[ \boxed{34} \] ---
Promotional Banner

Topper's Solved these Questions

  • ALGEBRA

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION|194 Videos
  • AGE

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION|30 Videos
  • CO-ORDINATE GEOMATRY

    MOTHERS|Exercise OBJECTIVE QUESTION|72 Videos

Similar Questions

Explore conceptually related problems

If sqrt(x)+(1)/(sqrt(x)) =sqrt(6) , then x^(2)+(1)/(x^(2)) is equal to :

(1)/(sqrt(2x))+sqrt(2x)

If sqrt(x)-(1)/(sqrt(x))=sqrt(5) , then (x^(2)+(1)/(x^(2))) is equal to :

MOTHERS-ALGEBRA -MULTIPLE CHOICE QUESTION
  1. If (a + b) = 6 and ab = 8, then (a^3+b^3) is equal to: यदि a + b) = ...

    Text Solution

    |

  2. If a + b + c = 6 and ab + bc + ca = 5, then a^3+b^3+c^3-3abc is equal ...

    Text Solution

    |

  3. If sqrt(x) + (1)/(sqrt(x)) = 2sqrt(2), then x^(2) + (1)/(x^(2)) is equ...

    Text Solution

    |

  4. If sqrt(x) - (1)/(sqrt(x)) = 2sqrt(2), then x^(2) + (1)/(x^(2)) is equ...

    Text Solution

    |

  5. If a+b+c = 6 and a^(3) + b^(3) + c^(3) - 3abc = 126, then ab + bc + ca...

    Text Solution

    |

  6. If a + b = 5 and ab = 3, then (a^3+b^3) is equal to: यदि a + b = 5 ह...

    Text Solution

    |

  7. If a + b + c = 7 and ab +bc + ca = 1, then a^(3) + b^(3) + c^(3) - 3ab...

    Text Solution

    |

  8. If a - b = 5 and ab = 2 , then (a^3-b^3) is equal to: यदि a - b = 5 ...

    Text Solution

    |

  9. If sqrt(x) - (1)/(sqrt(x)) = 3sqrt(2), then x^(2) + (1)/(x^(2)) is equ...

    Text Solution

    |

  10. If (a - b) = 4 and ab = 2, then (a^3-b^3) is equal to: यदि (a - b) =...

    Text Solution

    |

  11. If sqrt(x) - (1)/(sqrt(x)) = sqrt(5) then x^(2) + (1)/(x^(2)) is equal...

    Text Solution

    |

  12. If a + b +c = 8 and ab + bc + ca = 20, then a^3+b^3+c^3-3abc is equal...

    Text Solution

    |

  13. If sqrt(x) + (1)/(sqrt(x)) = sqrt(6), then x^(2) + (1)/(x^(2)) is equa...

    Text Solution

    |

  14. If a + b + c = 10 and ab + bc + ca = 32 then a^(3) + b^(3) + c^(3) - ...

    Text Solution

    |

  15. If a - b = 5 and ab = 6, then (a^3-b^3) is equal to: यदि a - b = 5...

    Text Solution

    |

  16. If x + (1)/( x) = 5 then x^(3) + (1)/( x^(3)) is equal to

    Text Solution

    |

  17. If (x-5)^3+(x-6)^3+(x-7)^3= 3 (x - 5) (x - 6) (x - 7), then what is th...

    Text Solution

    |

  18. If a^(3) - b^(3) = 208 and a - b = 4 then (a + b)^(2) - ab is equ...

    Text Solution

    |

  19. If x^8-1442x^4+1=0, then a possible value of x-1/x is: यदि x^8-1442x...

    Text Solution

    |

  20. If sqrt(86-60sqrt2)=a-b sqrt2, then what will be the value of sqrt(a^2...

    Text Solution

    |