Home
Class 14
MATHS
If sqrt(x) + (1)/(sqrt(x)) = 2sqrt(2), t...

If `sqrt(x) + (1)/(sqrt(x)) = 2sqrt(2)`, then `x^(2) + (1)/(x^(2))` is equal to :

A

34

B

64

C

36

D

32

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sqrt{x} + \frac{1}{\sqrt{x}} = 2\sqrt{2} \) and find \( x^2 + \frac{1}{x^2} \), we can follow these steps: ### Step 1: Introduce a substitution Let \( y = \sqrt{x} \). Then, the equation becomes: \[ y + \frac{1}{y} = 2\sqrt{2} \] ### Step 2: Square both sides Now, we square both sides of the equation: \[ \left(y + \frac{1}{y}\right)^2 = (2\sqrt{2})^2 \] This simplifies to: \[ y^2 + 2 + \frac{1}{y^2} = 8 \] ### Step 3: Rearrange the equation Now, we can rearrange the equation to isolate \( y^2 + \frac{1}{y^2} \): \[ y^2 + \frac{1}{y^2} = 8 - 2 \] \[ y^2 + \frac{1}{y^2} = 6 \] ### Step 4: Relate back to \( x \) Since \( y = \sqrt{x} \), we have: \[ y^2 = x \quad \text{and} \quad \frac{1}{y^2} = \frac{1}{x} \] Thus: \[ x^2 + \frac{1}{x^2} = (y^2)^2 + \left(\frac{1}{y^2}\right)^2 \] ### Step 5: Use the identity We can use the identity: \[ a^2 + b^2 = (a + b)^2 - 2ab \] where \( a = y^2 \) and \( b = \frac{1}{y^2} \). We already know \( y^2 + \frac{1}{y^2} = 6 \) and \( ab = 1 \): \[ x^2 + \frac{1}{x^2} = (y^2 + \frac{1}{y^2})^2 - 2 \] Substituting the known values: \[ x^2 + \frac{1}{x^2} = 6^2 - 2 = 36 - 2 = 34 \] ### Final Result Thus, the value of \( x^2 + \frac{1}{x^2} \) is: \[ \boxed{34} \] ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • ALGEBRA

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION|194 Videos
  • AGE

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION|30 Videos
  • CO-ORDINATE GEOMATRY

    MOTHERS|Exercise OBJECTIVE QUESTION|72 Videos

Similar Questions

Explore conceptually related problems

(1)/(sqrt(2x))+sqrt(2x)

If sqrt(x) + (1)/(sqrt(x)) = sqrt(6) , then x^(2) + (1)/(x^(2)) is equal to :

Knowledge Check

  • If sqrt(x) - (1)/(sqrt(x)) = 3sqrt(2) , then x^(2) + (1)/(x^(2)) is equal to :

    A
    A)402
    B
    B)324
    C
    C)326
    D
    D)398
  • If sqrt(x) + (1)/(sqrt(x)) = sqrt(6) , then x^(2) + (1)/(x^(2)) is equal to :

    A
    62
    B
    14
    C
    16
    D
    36
  • If sqrt(x) - (1)/(sqrt(x)) = sqrt(6) , then x^(2) + (1)/(x^(2)) is equal to :

    A
    62
    B
    40
    C
    54
    D
    66
  • Similar Questions

    Explore conceptually related problems

    If sqrt(x) - (1)/(sqrt(x)) = sqrt(5) then x^(2) + (1)/(x^(2)) is equal to :

    If sqrt(x)+(1)/(sqrt(x)) =sqrt(6) , then x^(2)+(1)/(x^(2)) is equal to :

    If sqrt(x)-(1)/(sqrt(x))=sqrt(5) , then (x^(2)+(1)/(x^(2))) is equal to :

    If sqrt(x) - (1)/(sqrt(x)) = 4 , then x^(2) + (1)/(x^(2)) is equal to :

    If x=3-2sqrt(2) , then sqrt(x)+((1)/(sqrt(x))) is equal to