Home
Class 14
MATHS
If sqrt(x) - (1)/(sqrt(x)) = 2sqrt(2), t...

If `sqrt(x) - (1)/(sqrt(x)) = 2sqrt(2)`, then `x^(2) + (1)/(x^(2))` is equal to :

A

102

B

98

C

104

D

100

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sqrt{x} - \frac{1}{\sqrt{x}} = 2\sqrt{2} \) and find the value of \( x^2 + \frac{1}{x^2} \), we can follow these steps: ### Step 1: Isolate the square root expression We start with the equation: \[ \sqrt{x} - \frac{1}{\sqrt{x}} = 2\sqrt{2} \] ### Step 2: Square both sides Next, we square both sides to eliminate the square root: \[ \left(\sqrt{x} - \frac{1}{\sqrt{x}}\right)^2 = (2\sqrt{2})^2 \] This simplifies to: \[ \left(\sqrt{x}\right)^2 - 2\left(\sqrt{x}\right)\left(\frac{1}{\sqrt{x}}\right) + \left(\frac{1}{\sqrt{x}}\right)^2 = 8 \] Which can be rewritten as: \[ x - 2 + \frac{1}{x} = 8 \] ### Step 3: Rearrange the equation Now, we rearrange the equation: \[ x + \frac{1}{x} - 2 = 8 \] Adding 2 to both sides gives: \[ x + \frac{1}{x} = 10 \] ### Step 4: Square again Next, we square both sides again to find \( x^2 + \frac{1}{x^2} \): \[ \left(x + \frac{1}{x}\right)^2 = 10^2 \] This expands to: \[ x^2 + 2 + \frac{1}{x^2} = 100 \] ### Step 5: Solve for \( x^2 + \frac{1}{x^2} \) Now we can isolate \( x^2 + \frac{1}{x^2} \): \[ x^2 + \frac{1}{x^2} = 100 - 2 \] Thus, we find: \[ x^2 + \frac{1}{x^2} = 98 \] ### Final Answer The value of \( x^2 + \frac{1}{x^2} \) is \( \boxed{98} \).
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • ALGEBRA

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION|194 Videos
  • AGE

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION|30 Videos
  • CO-ORDINATE GEOMATRY

    MOTHERS|Exercise OBJECTIVE QUESTION|72 Videos

Similar Questions

Explore conceptually related problems

(1)/(sqrt(2x))+sqrt(2x)

If sqrt(x) + (1)/(sqrt(x)) = sqrt(6) , then x^(2) + (1)/(x^(2)) is equal to :

Knowledge Check

  • If sqrt(x) - (1)/(sqrt(x)) = 3sqrt(2) , then x^(2) + (1)/(x^(2)) is equal to :

    A
    A)402
    B
    B)324
    C
    C)326
    D
    D)398
  • If sqrt(x) - (1)/(sqrt(x)) = sqrt(6) , then x^(2) + (1)/(x^(2)) is equal to :

    A
    62
    B
    40
    C
    54
    D
    66
  • If sqrt(x) + (1)/(sqrt(x)) = sqrt(6) , then x^(2) + (1)/(x^(2)) is equal to :

    A
    62
    B
    14
    C
    16
    D
    36
  • Similar Questions

    Explore conceptually related problems

    If sqrt(x) - (1)/(sqrt(x)) = sqrt(5) then x^(2) + (1)/(x^(2)) is equal to :

    If sqrt(x)-(1)/(sqrt(x))=sqrt(5) , then (x^(2)+(1)/(x^(2))) is equal to :

    If sqrt(x)+(1)/(sqrt(x)) =sqrt(6) , then x^(2)+(1)/(x^(2)) is equal to :

    If sqrt(x) - (1)/(sqrt(x)) = 4 , then x^(2) + (1)/(x^(2)) is equal to :

    If x=3-2sqrt(2) , then sqrt(x)+((1)/(sqrt(x))) is equal to