Home
Class 14
MATHS
If sqrt(x) - (1)/(sqrt(x)) = 2sqrt(2), t...

If `sqrt(x) - (1)/(sqrt(x)) = 2sqrt(2)`, then `x^(2) + (1)/(x^(2))` is equal to :

A

102

B

98

C

104

D

100

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sqrt{x} - \frac{1}{\sqrt{x}} = 2\sqrt{2} \) and find the value of \( x^2 + \frac{1}{x^2} \), we can follow these steps: ### Step 1: Isolate the square root expression We start with the equation: \[ \sqrt{x} - \frac{1}{\sqrt{x}} = 2\sqrt{2} \] ### Step 2: Square both sides Next, we square both sides to eliminate the square root: \[ \left(\sqrt{x} - \frac{1}{\sqrt{x}}\right)^2 = (2\sqrt{2})^2 \] This simplifies to: \[ \left(\sqrt{x}\right)^2 - 2\left(\sqrt{x}\right)\left(\frac{1}{\sqrt{x}}\right) + \left(\frac{1}{\sqrt{x}}\right)^2 = 8 \] Which can be rewritten as: \[ x - 2 + \frac{1}{x} = 8 \] ### Step 3: Rearrange the equation Now, we rearrange the equation: \[ x + \frac{1}{x} - 2 = 8 \] Adding 2 to both sides gives: \[ x + \frac{1}{x} = 10 \] ### Step 4: Square again Next, we square both sides again to find \( x^2 + \frac{1}{x^2} \): \[ \left(x + \frac{1}{x}\right)^2 = 10^2 \] This expands to: \[ x^2 + 2 + \frac{1}{x^2} = 100 \] ### Step 5: Solve for \( x^2 + \frac{1}{x^2} \) Now we can isolate \( x^2 + \frac{1}{x^2} \): \[ x^2 + \frac{1}{x^2} = 100 - 2 \] Thus, we find: \[ x^2 + \frac{1}{x^2} = 98 \] ### Final Answer The value of \( x^2 + \frac{1}{x^2} \) is \( \boxed{98} \).
Promotional Banner

Topper's Solved these Questions

  • ALGEBRA

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION|194 Videos
  • AGE

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION|30 Videos
  • CO-ORDINATE GEOMATRY

    MOTHERS|Exercise OBJECTIVE QUESTION|72 Videos

Similar Questions

Explore conceptually related problems

If sqrt(x)-(1)/(sqrt(x))=sqrt(5) , then (x^(2)+(1)/(x^(2))) is equal to :

If sqrt(x)+(1)/(sqrt(x)) =sqrt(6) , then x^(2)+(1)/(x^(2)) is equal to :

(1)/(sqrt(2x))+sqrt(2x)

MOTHERS-ALGEBRA -MULTIPLE CHOICE QUESTION
  1. If a + b + c = 6 and ab + bc + ca = 5, then a^3+b^3+c^3-3abc is equal ...

    Text Solution

    |

  2. If sqrt(x) + (1)/(sqrt(x)) = 2sqrt(2), then x^(2) + (1)/(x^(2)) is equ...

    Text Solution

    |

  3. If sqrt(x) - (1)/(sqrt(x)) = 2sqrt(2), then x^(2) + (1)/(x^(2)) is equ...

    Text Solution

    |

  4. If a+b+c = 6 and a^(3) + b^(3) + c^(3) - 3abc = 126, then ab + bc + ca...

    Text Solution

    |

  5. If a + b = 5 and ab = 3, then (a^3+b^3) is equal to: यदि a + b = 5 ह...

    Text Solution

    |

  6. If a + b + c = 7 and ab +bc + ca = 1, then a^(3) + b^(3) + c^(3) - 3ab...

    Text Solution

    |

  7. If a - b = 5 and ab = 2 , then (a^3-b^3) is equal to: यदि a - b = 5 ...

    Text Solution

    |

  8. If sqrt(x) - (1)/(sqrt(x)) = 3sqrt(2), then x^(2) + (1)/(x^(2)) is equ...

    Text Solution

    |

  9. If (a - b) = 4 and ab = 2, then (a^3-b^3) is equal to: यदि (a - b) =...

    Text Solution

    |

  10. If sqrt(x) - (1)/(sqrt(x)) = sqrt(5) then x^(2) + (1)/(x^(2)) is equal...

    Text Solution

    |

  11. If a + b +c = 8 and ab + bc + ca = 20, then a^3+b^3+c^3-3abc is equal...

    Text Solution

    |

  12. If sqrt(x) + (1)/(sqrt(x)) = sqrt(6), then x^(2) + (1)/(x^(2)) is equa...

    Text Solution

    |

  13. If a + b + c = 10 and ab + bc + ca = 32 then a^(3) + b^(3) + c^(3) - ...

    Text Solution

    |

  14. If a - b = 5 and ab = 6, then (a^3-b^3) is equal to: यदि a - b = 5...

    Text Solution

    |

  15. If x + (1)/( x) = 5 then x^(3) + (1)/( x^(3)) is equal to

    Text Solution

    |

  16. If (x-5)^3+(x-6)^3+(x-7)^3= 3 (x - 5) (x - 6) (x - 7), then what is th...

    Text Solution

    |

  17. If a^(3) - b^(3) = 208 and a - b = 4 then (a + b)^(2) - ab is equ...

    Text Solution

    |

  18. If x^8-1442x^4+1=0, then a possible value of x-1/x is: यदि x^8-1442x...

    Text Solution

    |

  19. If sqrt(86-60sqrt2)=a-b sqrt2, then what will be the value of sqrt(a^2...

    Text Solution

    |

  20. If a^2+b^2+c^2+96= 8(a+b-2c), then sqrt(ab-bc+ca) is equal to : यदि...

    Text Solution

    |