Home
Class 12
MATHS
Using the properties of determinants, pr...

Using the properties of determinants, prove that : `|[[x+a,b,c],[a,x+b,c],[a,b,x+c]]|`=`x^2(x+a+b+c)`

Answer

Step by step text solution for Using the properties of determinants, prove that : |[[x+a,b,c],[a,x+b,c],[a,b,x+c]]|=x^2(x+a+b+c) by MATHS experts to help you in doubts & scoring excellent marks in Class 12 exams.

Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DETERMINANTS

    BETTER CHOICE PUBLICATION|Exercise ASSIGNMENT (PREVIOUS YEAR.S BOARD QUESTIONS FOR PRACTICE) (MULTIPLE CHOICE QUESTION)|13 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    BETTER CHOICE PUBLICATION|Exercise PREVIOUS YEARS BOARDS QUESTIONS FOR PRACTICE (MULTIPLE CHOICE QUESTIONS)|94 Videos
  • DIFFERENTIAL EQUATIONS

    BETTER CHOICE PUBLICATION|Exercise PREVIOUS YEARS BOARD.S QUESTIONS FOR PRACTICE|50 Videos

Similar Questions

Explore conceptually related problems

Using the properties of determinants show that : |[[1,1,1],[a^2,b^2,c^2],[a^3,b^3,c^3]]|=(a-b)(b-c)(c-a)(ab+bc+ca) .

Using properties of determinants, prove that: |[3a,-a+b,-a+c],[-b+a,3b,-b+c],[-c+a,-c+b,3c]| = 3(a+b+c)(ab+bc+ca)

Using properties of determinants, prove that abs{:(b+c, a, a),(b, c + a, b ),(c, c, a+ b):} = 4 abc

Using properties of determinants, prove that abs{:(b+c, a, a),(b, c + a, b ),(c, c, a+ b):} = 4 abc

By using properties of determinants, show that : |[1,1,1],[a,b,c],[a^3,b^3,c^3]| = (a-b)(b-c)(c-a)(a+b+c)

Using the properties of determinant, show that : |[1,a+b,a^2+b^2],[1,b+c,b^2+c^2],[1,c+a,c^2+a^2]| = (a-b)(b-c)(c-a)

Using properties of determinants prove that abs{:(1,1,1),(a,b,c),(a^3, b^3 , c^3):}= ( a- b) ( b- c) ( c- a) ( a+ b + c) .

Using properties of determinants prove that abs{:(1,1,1),(a,b,c),(a^3, b^3 , c^3):}= ( a- b) ( b- c) ( c- a) ( a+ b + c) .

Using the property of determinants and without expanding , prove that: : |[0,a,-b],[-a,0,c],[b,c,0]| = 0

By using properties of determinants, show that : |[1,a,a^2],[1,b,b^2],[1,c,c^2]| = (a-b)(b-c)(c-a)