Home
Class 12
MATHS
If T(2)//T(3) in the expansion of (a+b)^...

If `T_(2)//T_(3)` in the expansion of `(a+b)^(n) and T_(3)//T_(4)` in the expansion of `(a+b)^(n+3)` are equal, then n =

A

3

B

4

C

5

D

6

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we need to find the value of \( n \) such that \( \frac{T_2}{T_3} \) in the expansion of \( (a+b)^n \) is equal to \( \frac{T_3}{T_4} \) in the expansion of \( (a+b)^{n+3} \). ### Step 1: Write the general term for the binomial expansion The general term \( T_{r+1} \) in the expansion of \( (a+b)^n \) is given by: \[ T_{r+1} = \binom{n}{r} a^{n-r} b^r \] ### Step 2: Find \( T_2 \) and \( T_3 \) in the expansion of \( (a+b)^n \) For \( T_2 \) (where \( r = 1 \)): \[ T_2 = \binom{n}{1} a^{n-1} b^1 = n a^{n-1} b \] For \( T_3 \) (where \( r = 2 \)): \[ T_3 = \binom{n}{2} a^{n-2} b^2 = \frac{n(n-1)}{2} a^{n-2} b^2 \] ### Step 3: Write the ratio \( \frac{T_2}{T_3} \) Now, we can write the ratio: \[ \frac{T_2}{T_3} = \frac{n a^{n-1} b}{\frac{n(n-1)}{2} a^{n-2} b^2} = \frac{2n a^{n-1} b}{n(n-1) a^{n-2} b^2} \] This simplifies to: \[ \frac{T_2}{T_3} = \frac{2a}{(n-1)b} \] ### Step 4: Find \( T_3 \) and \( T_4 \) in the expansion of \( (a+b)^{n+3} \) For the expansion \( (a+b)^{n+3} \): For \( T_3 \) (where \( r = 2 \)): \[ T_3 = \binom{n+3}{2} a^{(n+3)-2} b^2 = \frac{(n+3)(n+2)}{2} a^{n+1} b^2 \] For \( T_4 \) (where \( r = 3 \)): \[ T_4 = \binom{n+3}{3} a^{(n+3)-3} b^3 = \frac{(n+3)(n+2)(n+1)}{6} a^{n} b^3 \] ### Step 5: Write the ratio \( \frac{T_3}{T_4} \) Now, we can write the ratio: \[ \frac{T_3}{T_4} = \frac{\frac{(n+3)(n+2)}{2} a^{n+1} b^2}{\frac{(n+3)(n+2)(n+1)}{6} a^{n} b^3} \] This simplifies to: \[ \frac{T_3}{T_4} = \frac{3(n+3)(n+2)a^{n+1} b^2}{(n+3)(n+2)(n+1)a^{n} b^3} = \frac{3a}{(n+1)b} \] ### Step 6: Set the two ratios equal Now we set the two ratios equal to each other: \[ \frac{2a}{(n-1)b} = \frac{3a}{(n+1)b} \] ### Step 7: Simplify and solve for \( n \) Cancelling \( a \) and \( b \) (assuming \( a \neq 0 \) and \( b \neq 0 \)): \[ \frac{2}{n-1} = \frac{3}{n+1} \] Cross-multiplying gives: \[ 2(n+1) = 3(n-1) \] Expanding both sides: \[ 2n + 2 = 3n - 3 \] Rearranging gives: \[ 2 + 3 = 3n - 2n \implies n = 5 \] ### Conclusion Thus, the value of \( n \) is: \[ \boxed{5} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • BINOMIAL THEOREM AND MATHEMATICAL INDUCTION

    ML KHANNA|Exercise Problem Set (2) (TRUE AND FALSE)|1 Videos
  • BINOMIAL THEOREM AND MATHEMATICAL INDUCTION

    ML KHANNA|Exercise Problem Set (3) (MULTIPLE CHOICE QUESTIONS) |12 Videos
  • BINOMIAL THEOREM AND MATHEMATICAL INDUCTION

    ML KHANNA|Exercise Problem Set (1) (FILL IN THE BLANKS)|3 Videos
  • AREA OF CURVES

    ML KHANNA|Exercise SELF ASSESSEMENT TEST|16 Videos
  • CO-ORDINATE GEOMETRY OF THREE DIMENSION

    ML KHANNA|Exercise SELF ASSIGNMENT TEST |11 Videos

Similar Questions

Explore conceptually related problems

In the expansion of (x+y)^(n),T_(r+1) = __________

If in the expansion of (2^(x)+(1)/(4^(x)))^(n),(T_(3))/(T_(2))=7 and the sum of the co-fficients of 2nd and 3rd terms is 36, then the value of x is

Knowledge Check

  • Let t_(n) denote the n^(th) term in a binomial expansion. If (t_(6))/(t_(5)) in the expansion of (a+b)^(n+4) and (t_(5))/(t_(4)) in the expansion of (a+b)^(n) are equal, then n is

    A
    9
    B
    11
    C
    13
    D
    15
  • In expansion of (x+a)^(5), T_(2):T_(3)=1:3 , then x:a is equal to

    A
    1 : 2
    B
    2 : 1
    C
    2 : 3
    D
    3 : 2
  • If T_(2),T_(3),T_(4) in the expansion of (x+y)^(n) be respectively 135, 30 and 10/3 then n is equal to

    A
    5
    B
    6
    C
    7
    D
    none
  • Similar Questions

    Explore conceptually related problems

    In the expansion of (x-(1)/(3x^(2)))^(9), the term independent of x is T_(3) b.T_(4) c.T_(5) d.none of these

    t_(n)=n^(3)-3, find series

    If T_(0),T_(1),T_(2),...,T_(n) represent the terms in the expansion of (x+a)^(n), then find the value of (T_(0)-T_(2)+T_(4)-...)^(2)+(T_(1)-T_(3)+T_(5)-...)^(2)n in N

    If T_(n)=cos^(n)theta+sin ^(n)theta, then 2T_(6)-3T_(4)+1=

    If T_(0), T_(1), T_(2),...,T_(n) represent the terms in the expansion of (x+a)^(n) , then the value of (T_(0)-T_(2)+T_(4)-T_(6)+...)^(2) + (T_(1)-T_(3)+T_(5)-...)^(2) is