Home
Class 12
MATHS
If n is ann integer greater than 1, then...

If n is ann integer greater than 1, then
`a-^(n)C_(1)(a-1)+.^(n)C_(2)(a-2)- . . .+(-1)^(n)(a-n)=`

A

a

B

0

C

`a^(2)`

D

`2^(n)`

Text Solution

Verified by Experts

The correct Answer is:
b
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • BINOMIAL THEOREM AND MATHEMATICAL INDUCTION

    ML KHANNA|Exercise Problem Set (4) (Assertion/Reason) |1 Videos
  • BINOMIAL THEOREM AND MATHEMATICAL INDUCTION

    ML KHANNA|Exercise Problem Set (4) (TRUE AND FALSE) |11 Videos
  • BINOMIAL THEOREM AND MATHEMATICAL INDUCTION

    ML KHANNA|Exercise Problem Set (3) (MULTIPLE CHOICE QUESTIONS) |12 Videos
  • AREA OF CURVES

    ML KHANNA|Exercise SELF ASSESSEMENT TEST|16 Videos
  • CO-ORDINATE GEOMETRY OF THREE DIMENSION

    ML KHANNA|Exercise SELF ASSIGNMENT TEST |11 Videos

Similar Questions

Explore conceptually related problems

If n is an odd integer greater than or equal to 1, then the value of n^(3)-(n-1)^(3)+(n-1)^(3)-(n-1)^(3)+...+(-1)^(n-1)1^(3)

if n>=2 then (a-1)c_(1)-(a-2)c_(2)+(a-3)c_(3)-.........(-1)^(n-1)(a-n)c_(n)=

Knowledge Check

  • If n is an integer greater than 1,than the value of a-""^(n)C_(1)(a-1)+""^(n)C_(2)(a-2)+……+(-1)^(n).""^(n)C_(n)(a-n) is

    A
    `a^(n)`
    B
    `(-a)^(n)`
    C
    0
    D
    1
  • If n is an odd number greater than 1, then n(n^(2)-1) is

    A
    divisible by 96 always
    B
    divisible by 48 always
    C
    divisible by 24 always
    D
    None of these
  • If n in N, n > 1 , then value of E= a - ""^(n)C_(1) (a-1) + ""^(n)C_(2) (a -2)+ ... + (- 1)^(n) (a-n) (""^(n)C_(n)) is

    A
    a
    B
    0
    C
    `a^(2)`
    D
    `2^(n)`
  • Similar Questions

    Explore conceptually related problems

    Find .^(n)C_(1)-(1)/(2).^(n)C_(2)+(1)/(3).^(n)C_(3)- . . . +(-1)^(n-1)(1)/(n).^(n)C_(n)

    If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n) , prove that C_(0)^(2) - C_(1)^(2) + C_(2)^(2) -…+ (-1)^(n) *C_(n)^(2)= 0 or (-1)^(n//2) * (n!)/((n//2)! (n//2)!) , according as n is odd or even Also , evaluate C_(0)^(2) + C_(1)^(2) + C_(2)^(2) - ...+ (-1)^(n) *C_(n)^(2) for n = 10 and n= 11 .

    Prove that ^nC_(0)^(n)C_(0)-^(n+1)C_(1)^(n)C_(1)+^(n+2)C_(2)^(n)C_(2)-...=(-1)^(n)

    1+^(n)C_(1)+^(n+1)C_(2)+^(n+2)C_(3)+......+^(n+r-1)C_(r)

    If n is a positvie integers, the value of E=(2n+1).^(n)C_(0)+(2n-1).^(n)C_(1)+(2n-3)^(n)C_(2)+………+1. ^(n)C_(n)2 is