Home
Class 12
MATHS
Let M be a 3xx3 matrix satisfying M[(0...

Let M be a `3xx3` matrix satisfying
`M[(0),(1),(0)]=[(-1),(2),(3)],M[(1),(-1),(0)]=[(1),(1),(-1)]` and `M[(1),(1),(1)]=[(0),(0),(12)]` then
The sum of the diagonal entries of M is

A

9

B

4

C

1

D

10

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the sum of the diagonal entries of the matrix \( M \) given the conditions provided. Let's denote the matrix \( M \) as follows: \[ M = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \] ### Step 1: Use the first condition The first condition states that: \[ M \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} -1 \\ 2 \\ 3 \end{pmatrix} \] This means that the second column of \( M \) must satisfy: \[ \begin{pmatrix} b \\ e \\ h \end{pmatrix} = \begin{pmatrix} -1 \\ 2 \\ 3 \end{pmatrix} \] From this, we can conclude: - \( b = -1 \) - \( e = 2 \) - \( h = 3 \) ### Step 2: Use the second condition The second condition states that: \[ M \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix} \] This gives us the equation: \[ \begin{pmatrix} a - b \\ d - e \\ g - h \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix} \] Substituting the values of \( b \), \( e \), and \( h \): 1. \( a - (-1) = 1 \) → \( a + 1 = 1 \) → \( a = 0 \) 2. \( d - 2 = 1 \) → \( d = 3 \) 3. \( g - 3 = -1 \) → \( g = 2 \) ### Step 3: Use the third condition The third condition states that: \[ M \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 12 \end{pmatrix} \] This gives us the equation: \[ \begin{pmatrix} a + b + c \\ d + e + f \\ g + h + i \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 12 \end{pmatrix} \] Substituting the values we have: 1. \( 0 - 1 + c = 0 \) → \( c = 1 \) 2. \( 3 + 2 + f = 0 \) → \( f = -5 \) 3. \( 2 + 3 + i = 12 \) → \( i = 7 \) ### Step 4: Construct the matrix \( M \) Now we can construct the matrix \( M \): \[ M = \begin{pmatrix} 0 & -1 & 1 \\ 3 & 2 & -5 \\ 2 & 3 & 7 \end{pmatrix} \] ### Step 5: Calculate the sum of the diagonal entries The diagonal entries of \( M \) are \( a, e, i \): \[ \text{Sum of diagonal entries} = a + e + i = 0 + 2 + 7 = 9 \] ### Final Answer The sum of the diagonal entries of \( M \) is \( 9 \). ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MATRICES

    ML KHANNA|Exercise COMPREHENSION|3 Videos
  • MATRICES

    ML KHANNA|Exercise PROBLEM SET(1) (FILL IN THE BLANKS)|19 Videos
  • MATHEMATICAL REASONING

    ML KHANNA|Exercise PROBLEM SET (2) ASSERTION/REASON|3 Videos
  • MAXIMA AND MINIMA

    ML KHANNA|Exercise MISCELANEOUS EXERCISE (COMPREHENSION)|3 Videos

Similar Questions

Explore conceptually related problems

If A be a 3xx3 matrix satisfying A[(0),(1),(0)]=[(-1),(2),(3)],A[(1),(-1),(0)]=[(1),(1),(-1)] and A[(1),(1),(1)]=[(0),(0),(12)] then find tr(A)

Let M be a 3xx3 matrix satisfying {:M[(0),(1),(0)]=[(1),(-1),(6)]=[(1),(1),(-1)]and","M=[(1),(1),(1)]=[(0),(0),(12)]:} Then the sum of the diagonal entries of M, is

Knowledge Check

  • The matrix A satisfying A[(1,5),(0,1)]=[(3,-1),(-1,4)] is

    A
    `[(3,2),(6,-3)]`
    B
    `[(3,-16),(6,-30)]`
    C
    `[(3,-16),(6,30)]`
    D
    `[(3,-3),(6,2)]`
  • If M is a 2xx2 matrix such that [(1),(-1)]=[(-1),(2)] and M^(2)[(1),(-1)]=[(1),(0)] then sum of elements of M is

    A
    `0`
    B
    `2`
    C
    `5`
    D
    `8`
  • The matrix A satisfying the equation [(1,3),(0,1)]A=[(1,1),(0,-1)] is

    A
    `[(1,4),(-1,0)]`
    B
    `[(1,-4),(1,0)]`
    C
    `[(1,4),(0,-1)]`
    D
    None
  • Similar Questions

    Explore conceptually related problems

    Let M be a 3xx3 matrix satisfying M[{:(0),(1),(0):}]=[{:(-1),(2),(3):}],M[{:(1),(-1),(0):}]=[{:(1),(1),(1):}]=[{:(0),(0),(12):}] then the sum of the diagonal entries of M is

    Let M be a 3xx3 matrix satisfying M |{:(,0),(,1),(,0):}|=|{:(,-1),(,2),(,3):}|, M|{:(,1),(,-1),(,0):}|=|{:(,1),(,1),(,-1):}| and and M|{:(,1),(,1),(,1):}|= |{:(,0),(,0),(,12):}| Then the sum of the diagonal entries of M is

    Let a be a 3xx3 matric such that [(1,2,3),(0,2,3),(0,1,1)]=[(0,0,1),(1,0,0),(0,1,0)] , then find A^(-1) .

    The matrix A satisfying the condition [(1,3),(0,1)]A=[(1,1),(0,-1)] is

    Let A be a 3xx3 matrix such that A [(1,2,3),(0,2,3),(0,1,1)]=[(0,0,0),(1,0,0),(0,1,0)] , then A^(-1) is :