Home
Class 12
MATHS
If the vertices of a trianle ABC be the ...

If the vertices of a trianle ABC be the ponts (-36,7),(20,7) and (0,-8) respectively the the coordinates of its centroid incentre are ………and …………..respectively.

Text Solution

AI Generated Solution

The correct Answer is:
To find the coordinates of the centroid and incenter of triangle ABC with vertices A(-36, 7), B(20, 7), and C(0, -8), we will follow these steps: ### Step 1: Calculate the Centroid The formula for the centroid (G) of a triangle with vertices at points \(A(x_1, y_1)\), \(B(x_2, y_2)\), and \(C(x_3, y_3)\) is given by: \[ G\left( \frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3} \right) \] Substituting the coordinates of points A, B, and C: - \(x_1 = -36\), \(y_1 = 7\) - \(x_2 = 20\), \(y_2 = 7\) - \(x_3 = 0\), \(y_3 = -8\) Calculating the x-coordinate of the centroid: \[ G_x = \frac{-36 + 20 + 0}{3} = \frac{-16}{3} \] Calculating the y-coordinate of the centroid: \[ G_y = \frac{7 + 7 - 8}{3} = \frac{6}{3} = 2 \] Thus, the coordinates of the centroid are: \[ G\left( -\frac{16}{3}, 2 \right) \] ### Step 2: Calculate the Incenter To find the incenter (I), we first need to calculate the lengths of the sides of the triangle using the distance formula: \[ AB = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \] \[ BC = \sqrt{(x_3 - x_2)^2 + (y_3 - y_2)^2} \] \[ CA = \sqrt{(x_1 - x_3)^2 + (y_1 - y_3)^2} \] Calculating the lengths: 1. Length of AB: \[ AB = \sqrt{(20 - (-36))^2 + (7 - 7)^2} = \sqrt{(20 + 36)^2} = \sqrt{56^2} = 56 \] 2. Length of BC: \[ BC = \sqrt{(0 - 20)^2 + (-8 - 7)^2} = \sqrt{(-20)^2 + (-15)^2} = \sqrt{400 + 225} = \sqrt{625} = 25 \] 3. Length of CA: \[ CA = \sqrt{(-36 - 0)^2 + (7 - (-8))^2} = \sqrt{(-36)^2 + (15)^2} = \sqrt{1296 + 225} = \sqrt{1521} = 39 \] Now, using the lengths of the sides \(a = BC\), \(b = CA\), and \(c = AB\) in the incenter formula: \[ I\left( \frac{a x_1 + b x_2 + c x_3}{a + b + c}, \frac{a y_1 + b y_2 + c y_3}{a + b + c} \right) \] Substituting the values: - \(a = 25\), \(b = 39\), \(c = 56\) - \(x_1 = -36\), \(y_1 = 7\) - \(x_2 = 20\), \(y_2 = 7\) - \(x_3 = 0\), \(y_3 = -8\) Calculating the x-coordinate of the incenter: \[ I_x = \frac{25(-36) + 39(20) + 56(0)}{25 + 39 + 56} = \frac{-900 + 780 + 0}{120} = \frac{-120}{120} = -1 \] Calculating the y-coordinate of the incenter: \[ I_y = \frac{25(7) + 39(7) + 56(-8)}{25 + 39 + 56} = \frac{175 + 273 - 448}{120} = \frac{0}{120} = 0 \] Thus, the coordinates of the incenter are: \[ I(-1, 0) \] ### Final Answer The coordinates of the centroid and incenter of triangle ABC are: - Centroid: \(\left( -\frac{16}{3}, 2 \right)\) - Incenter: \((-1, 0)\)
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • RECTANGULAR CARTESIAN CO-ORDINATE SYSTEM AND THE STRAIGHT LINE

    ML KHANNA|Exercise PROBLEM SET(2)(MULTIPLE CHOICE QUESTIONS)|136 Videos
  • RECTANGULAR CARTESIAN CO-ORDINATE SYSTEM AND THE STRAIGHT LINE

    ML KHANNA|Exercise PROBLEM SET(2)(TRUE AND FALSE)|7 Videos
  • RECTANGULAR CARTESIAN CO-ORDINATE SYSTEM AND THE STRAIGHT LINE

    ML KHANNA|Exercise PROBLEM SET(1)(TRUE AND FALSE)|1 Videos
  • PROPERTIES OF TRIANGLES

    ML KHANNA|Exercise Self Assessment Test (Multiple Choise Questions)|34 Videos
  • SELF ASSESSMENT TEST

    ML KHANNA|Exercise OBJECTIVE MATHEMATICS |16 Videos

Similar Questions

Explore conceptually related problems

The incentre of the triangle whose vertices are (-36, 7), (20, 7) and (0, -8) is

If the vertices of DeltaABC are A(-1, -3) , B(2, 1) and C(8, -4), then the coordinates of its centroid are :

Knowledge Check

  • The vertices of a triangle are the points A(-36,7),B(20,7) and C(0,-8) . If G and I be the centroid ad incentre of the triangle, then G I is equal to

    A
    `1/3sqrt(397)`
    B
    `1/3sqrt(173)`
    C
    `1/3sqrt(205)`
    D
    None
  • Vertics of a triangle ABC are the points (0,0),(a,0) and (a/2,(asqrt(3))/2) . Its incentre is the point

    A
    `((3a)/4,(sqrt(3)a)/4)`
    B
    `(a/2,(asqrt(3))/6)`
    C
    `(a/6,(asqrt(3))/2)`
    D
    `(a/3,(asqrt(3))/2)`
  • If orthocentre and circumcentre of a triangle are respectively (1,1) and (3,2), then the coordinates of its centroid are

    A
    `(7/3, 5/3)`
    B
    `(5/3, 7/3)`
    C
    (7,5)
    D
    None of these
  • Similar Questions

    Explore conceptually related problems

    If the coordinates of the vertices A,B,C of the ABC be (-4,2),(12,-2) and (8,6) respectively,then /_B=

    If a+b+c=0 and A(a,b), B(b,c) and C(c,a) are vertices of DeltaABC , then the coordinates of its centroid are:

    The coordinates of the vertices of a triangles are (3,1) , (2,3) and (-2,2) . Find the coordinates of the centroid of the triangle ABC :

    The coordinates of the vertices of a triangle are (3, 1), (2, 3) and (-2, 2). Find the coordinates of the centroid of the triangle ABC :

    If the coordinates of orthocentre O' are centroid G of a DeltaABC are (0,1) and (2,3) respectively, then the coordinates of the circumcentre are