Home
Class 12
MATHS
The inequality 2 ^("sin"^(2) theta )+2 ^...

The inequality `2 ^("sin"^(2) theta )+2 ^(cos^(2) theta ) ge 2 sqrt( 2)` holds for all real `theta`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \( 2^{\sin^2 \theta} + 2^{\cos^2 \theta} \geq 2\sqrt{2} \), we can follow these steps: ### Step 1: Use the identity for sine and cosine We know that \( \sin^2 \theta + \cos^2 \theta = 1 \). Let's denote \( x = \sin^2 \theta \). Then, \( \cos^2 \theta = 1 - x \). ### Step 2: Rewrite the inequality Substituting \( x \) into the inequality gives us: \[ 2^x + 2^{1-x} \geq 2\sqrt{2} \] ### Step 3: Simplify the expression We can rewrite \( 2^{1-x} \) as \( \frac{2}{2^x} \): \[ 2^x + \frac{2}{2^x} \geq 2\sqrt{2} \] ### Step 4: Let \( y = 2^x \) Now, substituting \( y = 2^x \), we have: \[ y + \frac{2}{y} \geq 2\sqrt{2} \] ### Step 5: Multiply through by \( y \) To eliminate the fraction, multiply the entire inequality by \( y \) (noting that \( y > 0 \)): \[ y^2 + 2 \geq 2\sqrt{2}y \] ### Step 6: Rearrange the inequality Rearranging gives us: \[ y^2 - 2\sqrt{2}y + 2 \geq 0 \] ### Step 7: Analyze the quadratic The expression \( y^2 - 2\sqrt{2}y + 2 \) is a quadratic in \( y \). We can find its discriminant to determine if it has real roots: \[ D = (2\sqrt{2})^2 - 4 \cdot 1 \cdot 2 = 8 - 8 = 0 \] Since the discriminant is zero, the quadratic has one real root. ### Step 8: Find the root Using the quadratic formula: \[ y = \frac{2\sqrt{2} \pm 0}{2} = \sqrt{2} \] Thus, the quadratic can be expressed as: \[ (y - \sqrt{2})^2 \geq 0 \] This is true for all \( y \) since squares are always non-negative. ### Step 9: Conclusion Since \( y = 2^{\sin^2 \theta} \) can take any positive value, the inequality holds for all real \( \theta \).
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise PROBLEM SET (3) ( MULTIPLE CHOICE QUESTIONS)|23 Videos
  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise PROBLEM SET (3) (FILL IN THE BLANKS)|2 Videos
  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise PROBLEM SET (2) ( MULTIPLE CHOICE QUESTIONS)|35 Videos
  • TRIGONOMETRICAL EQUATIONS

    ML KHANNA|Exercise SELF ASSESSMENT TEST |27 Videos

Similar Questions

Explore conceptually related problems

The inequality 2^(sintheta) + 2 ^(cos theta ) ge 2^(1- ( 1//sqrt(2))) holds for all real values of theta

The inequality 2^(sintheta) + 2 ^(cos theta ) ge 2^(1- ( 1//sqrt(2))) holds for all real values of theta

Knowledge Check

  • Given A = sin ^(2) theta + cos ^(4) theta , then for all real theta ,

    A
    `1le Ale2`
    B
    `3//4 le A le1`
    C
    `13//16 le A le1`
    D
    `3//4 leA le 13//16`
  • If A= sin^(2) theta + cos^(4) theta , then for al real vaues of theta ,

    A
    `1 le A le 2`
    B
    `(3)/(4) le A le 1`
    C
    `(13)/(16) le A le 1`
    D
    `(3)/(4) le A le (13)/(16)`
  • Period of sin theta - sqrt2 cos theta is

    A
    `pi/4`
    B
    `pi/2`
    C
    `pi`
    D
    `2pi`
  • Similar Questions

    Explore conceptually related problems

    The inequality 2^(sin theta)+2^(cos theta)>=2^(1-(1)/(sqrt(2))), holds for all real values of theta

    The inequality 2^(sin theta)+2^(cos theta)ge2^((1-(1)/(sqrt(2))) holds for

    The inequation 3^(sin^(2)theta)+3^(cos^(2)theta)>=2sqrt(3) is true

    sin theta+cos theta=sqrt(2)

    The value of the determinants |("cos"^(2)(theta)/(2),"sin"^(2)(theta)/(2)),("sin"^(2) (theta)/(2),"cos"^(2) (theta)/(2))| for all values of theta , is :