Home
Class 12
MATHS
The value of cos"" ( pi )/( 7) cos"" ( 2...

The value of `cos"" ( pi )/( 7) cos"" ( 2pi )/(7) cos "" ( 4pi )/( 7 )` is

A

0

B

`1//2`

C

`1//3`

D

`- 1//8`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \cos\left(\frac{\pi}{7}\right) \cos\left(\frac{2\pi}{7}\right) \cos\left(\frac{4\pi}{7}\right) \), we can follow these steps: ### Step 1: Multiply and Divide by \( 2 \sin\left(\frac{\pi}{7}\right) \) We start with the expression: \[ \cos\left(\frac{\pi}{7}\right) \cos\left(\frac{2\pi}{7}\right) \cos\left(\frac{4\pi}{7}\right) \] We multiply and divide by \( 2 \sin\left(\frac{\pi}{7}\right) \): \[ \frac{2 \sin\left(\frac{\pi}{7}\right) \cos\left(\frac{\pi}{7}\right) \cos\left(\frac{2\pi}{7}\right) \cos\left(\frac{4\pi}{7}\right)}{2 \sin\left(\frac{\pi}{7}\right)} \] ### Step 2: Use the Identity \( 2 \sin \theta \cos \theta = \sin(2\theta) \) The numerator can be simplified using the identity \( 2 \sin \theta \cos \theta = \sin(2\theta) \): \[ \frac{\sin\left(\frac{2\pi}{7}\right) \cos\left(\frac{2\pi}{7}\right) \cos\left(\frac{4\pi}{7}\right)}{2 \sin\left(\frac{\pi}{7}\right)} \] ### Step 3: Apply the Identity Again Now, we can apply the identity again to \( \sin\left(\frac{2\pi}{7}\right) \cos\left(\frac{2\pi}{7}\right) \): \[ \frac{\sin\left(\frac{4\pi}{7}\right) \cos\left(\frac{4\pi}{7}\right)}{4 \sin\left(\frac{\pi}{7}\right)} \] ### Step 4: Use the Identity Once More We apply the identity again: \[ \frac{\sin\left(\frac{8\pi}{7}\right)}{8 \sin\left(\frac{\pi}{7}\right)} \] ### Step 5: Simplify \( \sin\left(\frac{8\pi}{7}\right) \) Now, we simplify \( \sin\left(\frac{8\pi}{7}\right) \): \[ \sin\left(\frac{8\pi}{7}\right) = \sin\left(\pi + \frac{\pi}{7}\right) = -\sin\left(\frac{\pi}{7}\right) \] ### Step 6: Substitute Back Substituting back into our expression gives: \[ \frac{-\sin\left(\frac{\pi}{7}\right)}{8 \sin\left(\frac{\pi}{7}\right)} \] ### Step 7: Cancel \( \sin\left(\frac{\pi}{7}\right) \) Assuming \( \sin\left(\frac{\pi}{7}\right) \neq 0 \), we can cancel \( \sin\left(\frac{\pi}{7}\right) \): \[ -\frac{1}{8} \] ### Final Answer Thus, the value of \( \cos\left(\frac{\pi}{7}\right) \cos\left(\frac{2\pi}{7}\right) \cos\left(\frac{4\pi}{7}\right) \) is: \[ \boxed{-\frac{1}{8}} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise PROBLEM SET (6) ( MULTIPLE CHOICE QUESTIONS)|41 Videos
  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise PROBLEM SET (6) TRUE AND FALSE|8 Videos
  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise PROBLEM SET (4) FILL IN THE BLANKS|10 Videos
  • TRIGONOMETRICAL EQUATIONS

    ML KHANNA|Exercise SELF ASSESSMENT TEST |27 Videos

Similar Questions

Explore conceptually related problems

The value of ( 1+ cos "" ( pi )/( 8 )) ( 1+ cos "" ( 3pi )/( 8 )) ( 1+ cos "" ( 5pi )/( 8 )) ( 1+ cos "" ( 7 pi )/( 8)) is

The value of cos "" (pi)/( 15) cos "" (2pi )/( 15)cos "" ( 3pi )/( 15)cos"" ( 4pi )/( 15)cos "" ( 5pi )/( 15) cos ""( 6pi)/( 15)cos "" ( 7 pi )/( 15) is

Knowledge Check

  • The value of cos "" ( pi )/( 7 ) cos "" ( 2pi )/( 7 ) cos "" ( 3pi )/( 7 ) is

    A
    `1//8`
    B
    `-1//8`
    C
    1
    D
    0
  • The value of cos "" (pi )/( 9 ) cos "" ( 2pi )/( 9 ) cos "" ( 3pi )/( 9 ) cos "" ( 4pi )/(9) is

    A
    `1//8`
    B
    `1//16`
    C
    `1//64`
    D
    none of these
  • cos"" ( 2pi )/( 7 ) + cos "" ( 4pi )/( 7 ) + cos "" ( 6pi )/( 7 )

    A
    0
    B
    `- ( 1)/( 2)`
    C
    1
    D
    none
  • Similar Questions

    Explore conceptually related problems

    cos 0 + cos"" ( pi )/( 7 ) + cos "" ( 2pi )/(7) + cos"" ( 3pi)/(7)+ cos"" ( 4pi )/( 7 ) + cos "" ( 5pi )/( 7 ) + cos "" ( 6pi )/( 7) =

    The value of cos""(pi)/(11) + cos"" ( 3pi)/( 11) + cos"" ( 5pi)/( 11) + cos"" ( 7pi)/( 11) + cos "" (9pi)/( 11) is

    The value of cos ( pi //5) cos ( 2pi //5) cos ( 4pi //5) cos ( 8pi //5) is

    The value of cos ( pi //5) cos ( 2pi //5) cos ( 4pi //5) cos ( 8pi //5) is

    The value of cos""(pi)/(9)cos""(2pi)/(9)cos""(3pi)/(9)cos""(4pi)/(9), is