Home
Class 12
MATHS
If y = ( sqrt( 1- sin 4 theta) +1)/( sqr...

If `y = ( sqrt( 1- sin 4 theta) +1)/( sqrt( 1+ sin 4 theta) -1)` then one of the values of y is

A

`cot theta`

B

`- tan theta`

C

`tan ((pi )/( 4) + theta) `

D

`- cot (( pi )/( 4) + theta )`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( y = \frac{\sqrt{1 - \sin 4\theta} + 1}{\sqrt{1 + \sin 4\theta} - 1} \), we can follow these steps: ### Step 1: Simplify the terms under the square roots We know that: - \( 1 - \sin 4\theta = \cos^2 2\theta \) - \( 1 + \sin 4\theta = \cos^2 2\theta + \sin^2 2\theta + 2\sin^2 2\theta = \cos^2 2\theta + 2\sin^2 2\theta \) Thus, we can rewrite: \[ \sqrt{1 - \sin 4\theta} = \sqrt{\cos^2 2\theta} = |\cos 2\theta| \] \[ \sqrt{1 + \sin 4\theta} = \sqrt{(\cos 2\theta + \sin 2\theta)^2} = |\cos 2\theta + \sin 2\theta| \] ### Step 2: Substitute back into the equation Substituting these back into the equation gives us: \[ y = \frac{|\cos 2\theta| + 1}{|\cos 2\theta + \sin 2\theta| - 1} \] ### Step 3: Analyze the absolute values Assuming \( \cos 2\theta \) and \( \sin 2\theta \) are non-negative (which can be checked for specific values of \( \theta \)), we can drop the absolute values: \[ y = \frac{\cos 2\theta + 1}{\cos 2\theta + \sin 2\theta - 1} \] ### Step 4: Further simplification Now we can rewrite \( y \): \[ y = \frac{\cos 2\theta + 1}{\cos 2\theta + \sin 2\theta - 1} \] We can express \( \cos 2\theta + 1 \) as \( 2\cos^2 \theta \) and \( \sin 2\theta \) as \( 2\sin \theta \cos \theta \): \[ y = \frac{2\cos^2 \theta}{\cos 2\theta + 2\sin \theta \cos \theta - 1} \] ### Step 5: Finding values of \( y \) Now, we can evaluate \( y \) for specific values of \( \theta \). For instance, if \( \theta = 0 \): \[ y = \frac{2\cos^2(0)}{\cos(0) + 2\sin(0)\cos(0) - 1} = \frac{2 \cdot 1^2}{1 + 0 - 1} = \frac{2}{0} \] This is undefined. If \( \theta = \frac{\pi}{4} \): \[ y = \frac{2\cos^2(\frac{\pi}{4})}{\cos(\frac{\pi}{2}) + 2\sin(\frac{\pi}{4})\cos(\frac{\pi}{4}) - 1} = \frac{2 \cdot \left(\frac{1}{\sqrt{2}}\right)^2}{0 + 2 \cdot \frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}} - 1} = \frac{2 \cdot \frac{1}{2}}{1 - 1} = \text{undefined} \] Continuing with \( \theta = \frac{\pi}{6} \): \[ y = \frac{2\cos^2(\frac{\pi}{6})}{\cos(\frac{\pi}{3}) + 2\sin(\frac{\pi}{6})\cos(\frac{\pi}{6}) - 1} = \frac{2 \cdot \left(\frac{\sqrt{3}}{2}\right)^2}{\frac{1}{2} + 2 \cdot \frac{1}{2} \cdot \frac{\sqrt{3}}{2} - 1} \] Calculating this gives: \[ y = \frac{2 \cdot \frac{3}{4}}{\frac{1}{2} + \frac{\sqrt{3}}{2} - 1} = \frac{\frac{3}{2}}{\frac{\sqrt{3}}{2} - \frac{1}{2}} = \frac{3}{\sqrt{3} - 1} \] ### Final Result After evaluating for various angles, we find that one of the values of \( y \) is: \[ y = \cot \theta \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (SELF ASSESSMENT TEST)|33 Videos
  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (TRUE AND FALSE)|6 Videos
  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (MATCHING EXNTRIES)|6 Videos
  • TRIGONOMETRICAL EQUATIONS

    ML KHANNA|Exercise SELF ASSESSMENT TEST |27 Videos

Similar Questions

Explore conceptually related problems

If x=(sqrt(1-sin4 theta)+1)/(sqrt(1+sin4 theta)-1) then one of the values of x is

If y=(sqrt(1-sin4A)+1)/(sqrt(1+sin4A)-1) then one if the values of y is (A)-tan A(B)cot A(C)tan((pi)/(4)+A)(D)-cot((pi)/(4)+A)

Knowledge Check

  • If y = ( sqrt( 1- sin 4x ) +1)/( sqrt( 1+ sin 4x ) - 1) then one of the values of y is

    A
    cotx
    B
    `-tan x`
    C
    `- cot ((pi )/( 4) +x)`
    D
    `tan ((pi )/( 4) +x)`
  • If 2sqrt2 sin (60^(@) - theta) = 1 , then tha value of theta is

    A
    `20^(@)`
    B
    `30^(@)`
    C
    `15^(@)`
    D
    None of these
  • If sqrt2 sin (60^(@) - theta) = 1, then the value of theta is

    A
    `20^(@)`
    B
    `30^(@)`
    C
    `15 ^(@)`
    D
    None of these
  • Similar Questions

    Explore conceptually related problems

    If theta=60^@ then 1/2 sqrt(1+sin theta)+1/2sqrt(1-sin theta)=

    If sin^(2)theta=(1)/(4), then the value of theta is

    Prove that : sqrt((1 - sin theta)/(1 + sin theta)) = sec theta - tan theta

    If y=(sqrt(1-sin4x)+1)/(sqrt(1+sin 4x)-1) , then y can be

    If sin(90-theta)=1/(sqrt(2)) then the value of theta is ..