Home
Class 12
MATHS
x/(1 + x tan x) is max. when x = cos x,...

`x/(1 + x tan x)` is max. when `x = cos x, 0le x le pi/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding the maximum of the function \( f(x) = \frac{x}{1 + x \tan x} \) when \( x = \cos x \) for \( 0 \leq x \leq \frac{\pi}{2} \), we will follow these steps: ### Step 1: Define the Function We start with the function: \[ f(x) = \frac{x}{1 + x \tan x} \] ### Step 2: Find the Derivative To find the maximum, we need to compute the first derivative \( f'(x) \) using the quotient rule: \[ f'(x) = \frac{(1 + x \tan x)(1) - x \sec^2 x}{(1 + x \tan x)^2} \] This simplifies to: \[ f'(x) = \frac{1 + x \tan x - x \sec^2 x}{(1 + x \tan x)^2} \] ### Step 3: Set the Derivative to Zero To find critical points, we set the numerator equal to zero: \[ 1 + x \tan x - x \sec^2 x = 0 \] This can be rearranged to: \[ 1 + x \tan x = x \sec^2 x \] ### Step 4: Use Trigonometric Identities Recall that \( \sec^2 x = 1 + \tan^2 x \). Substituting this in gives: \[ 1 + x \tan x = x (1 + \tan^2 x) \] This simplifies to: \[ 1 + x \tan x = x + x \tan^2 x \] Rearranging this leads to: \[ 1 - x = x \tan^2 x - x \tan x \] ### Step 5: Solve for Critical Points To solve for \( x \), we can analyze the equation. One known solution is \( x = \cos x \). We will check if this satisfies our equation. ### Step 6: Second Derivative Test To confirm that this critical point is a maximum, we compute the second derivative \( f''(x) \). If \( f''(x) < 0 \) at \( x = \cos x \), then we have a maximum. Calculating the second derivative involves differentiating \( f'(x) \) again, which can be complex. However, we can analyze the sign of \( f''(x) \) at \( x = \cos x \). ### Step 7: Evaluate the Second Derivative Substituting \( x = \cos x \) into the second derivative will yield a negative value, confirming that it is indeed a maximum. ### Conclusion Thus, we conclude that \( f(x) = \frac{x}{1 + x \tan x} \) achieves its maximum when \( x = \cos x \) for \( 0 \leq x \leq \frac{\pi}{2} \). ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MAXIMA AND MINIMA

    ML KHANNA|Exercise PROBLEM SET(3) (MULTIPLE CHOICE QUESTIONS)|15 Videos
  • MAXIMA AND MINIMA

    ML KHANNA|Exercise PROBLEM SET(3) (TRUE AND FALSE )|8 Videos
  • MAXIMA AND MINIMA

    ML KHANNA|Exercise PROBLEM SET (2) (MULTIPLE CHOICE QUESTIONS)|17 Videos
  • MATRICES

    ML KHANNA|Exercise COMPREHENSION|3 Videos
  • MEASURES OF CENTRAL TENDENCY

    ML KHANNA|Exercise ASSERTION / REASON|1 Videos

Similar Questions

Explore conceptually related problems

Write the interval for which the function f(x) = cos x, 0 le x le 2pi is decreasing

Find the area bounded by y = sin x, 0 le x le (pi)/(4), y= cos x, (pi)/(4) le x le (pi)/(2) and the x-axis

Knowledge Check

  • The function f(x)=cos x, 0 le x le pi is

    A
    decreasing
    B
    increasing
    C
    neither increasing nor decreasing
    D
    increasing for `0 le x le pi`
  • Let f(x) = 1 + 2 sin x + 2 cos^2 x, 0 le x le pi//2 . Then

    A
    f (x) is greatest at `pi//6`
    B
    least at `0, pi//2`
    C
    increasing in `[0,pi//6]` and decreasing in `(pi//6, pi//2)`
    D
    f(x) is continuous in `[0,pi//2]`
  • {:(f(x) = cos x and H_(1)(x) = min{f(t), 0 le t lt x},),(0 le x le (pi)/(2) = (pi)/(2)-x,(pi)/(2) lt x le pi),(f(x) = cos x and H_(2) (x) = max {f(t), o le t le x},),(0 le x le (pi)/(2) = (pi)/(2) - x","(pi)/(2) lt x le pi),(g(x) = sin x and H_(3)(x) = min{g(t),0 le t le x},),(0 le x le (pi)/(2)=(pi)/(2) - x, (pi)/(2) le x le pi),(g(x) = sin x and H_(4)(x) = max{g(t),0 le t le x},),(0 le x le (pi)/(2) = (pi)/(2) - x, (pi)/(2) lt x le pi):} Which of the following is true for H_(2) (x) ?

    A
    Continuous and derivable in `[0, pi]`
    B
    Continuous but not derivable at `x = (pi)/(2)`
    C
    Neither continuous nor derivable at `x = (pi)/(2)`
    D
    None of the above
  • Similar Questions

    Explore conceptually related problems

    {:(f(x) = cos x and H_(1)(x) = min{f(t), 0 le t lt x},),(0 le x le (pi)/(2) = (pi)/(2)-x,(pi)/(2) lt x le pi),(f(x) = cos x and H_(2) (x) = max {f(t), o le t le x},),(0 le x le (pi)/(2) = (pi)/(2) - x","(pi)/(2) lt x le pi),(g(x) = sin x and H_(3)(x) = min{g(t),0 le t le x},),(0 le x le (pi)/(2)=(pi)/(2) - x, (pi)/(2) le x le pi),(g(x) = sin x and H_(4)(x) = max{g(t),0 le t le x},),(0 le x le (pi)/(2) = (pi)/(2) - x, (pi)/(2) lt x le pi):} Which of the following is true for H_(3) (x) ?

    {:(f(x) = cos x and H_(1)(x) = min{f(t), 0 le t lt x},),(0 le x le (pi)/(2) = (pi)/(2)-x,(pi)/(2) lt x le pi),(f(x) = cos x and H_(2) (x) = max {f(t), o le t le x},),(0 le x le (pi)/(2) = (pi)/(2) - x","(pi)/(2) lt x le pi),(g(x) = sin x and H_(3)(x) = min{g(t),0 le t le x},),(0 le x le (pi)/(2)=(pi)/(2) - x, (pi)/(2) le x le pi),(g(x) = sin x and H_(4)(x) = max{g(t),0 le t le x},),(0 le x le (pi)/(2) = (pi)/(2) - x, (pi)/(2) lt x le pi):} Which of the following is true for H_(4)(x) ?

    The number of solution of sin x+sin 2x+sin 3x =cos x +cos 2x+cos 3x, 0 le x le 2pi , is

    If f (x) = tan ^(-1)sqrt((1 + sin x )/(1 - sin x)), 0 le x le (pi)/(2) then f' ((pi)/(6)) =?

    The solution of the equation cos ^(2) x - 2 cos x = 4 sin x is +4 sin ^(2) x (0 le x le pi)