Home
Class 12
MATHS
Solution of the diff. eqn. (1-x^(2)) (dy...

Solution of the diff. eqn. `(1-x^(2)) (dy)/(dx) +xy = xy^(2)` is ………..

Text Solution

AI Generated Solution

The correct Answer is:
To solve the differential equation \((1 - x^2) \frac{dy}{dx} + xy = xy^2\), we will follow these steps: ### Step 1: Rearrange the Equation First, we rearrange the equation to isolate \(\frac{dy}{dx}\): \[ (1 - x^2) \frac{dy}{dx} = xy^2 - xy \] ### Step 2: Divide by \((1 - x^2)\) Next, we divide the entire equation by \((1 - x^2)\): \[ \frac{dy}{dx} = \frac{xy^2 - xy}{1 - x^2} \] ### Step 3: Factor the Right-Hand Side Now, we can factor out \(xy\) from the right-hand side: \[ \frac{dy}{dx} = \frac{xy(y - 1)}{1 - x^2} \] ### Step 4: Separate Variables To separate the variables, we rewrite the equation: \[ \frac{dy}{y(y - 1)} = \frac{x}{1 - x^2} dx \] ### Step 5: Integrate Both Sides Now, we will integrate both sides. The left side requires partial fraction decomposition: \[ \frac{1}{y(y - 1)} = \frac{A}{y} + \frac{B}{y - 1} \] Solving for \(A\) and \(B\): \[ 1 = A(y - 1) + By \implies A + B = 0, -A = 1 \implies A = -1, B = 1 \] Thus, \[ \frac{1}{y(y - 1)} = -\frac{1}{y} + \frac{1}{y - 1} \] Now we integrate: \[ \int \left(-\frac{1}{y} + \frac{1}{y - 1}\right) dy = \int \frac{x}{1 - x^2} dx \] The left side integrates to: \[ -\ln|y| + \ln|y - 1| = \ln\left|\frac{y - 1}{y}\right| \] For the right side, we use the substitution \(u = 1 - x^2\), \(du = -2x dx\): \[ \int \frac{x}{1 - x^2} dx = -\frac{1}{2} \ln|1 - x^2| \] ### Step 6: Combine Results Combining both sides, we have: \[ \ln\left|\frac{y - 1}{y}\right| = -\frac{1}{2} \ln|1 - x^2| + C \] ### Step 7: Exponentiate to Solve for \(y\) Exponentiating both sides gives: \[ \frac{y - 1}{y} = K(1 - x^2)^{-1/2} \] Where \(K = e^C\). Rearranging yields: \[ y - 1 = Ky(1 - x^2)^{-1/2} \] ### Step 8: Solve for \(y\) Rearranging gives: \[ y(1 + K(1 - x^2)^{-1/2}) = 1 \] Thus, \[ y = \frac{1}{1 + K(1 - x^2)^{-1/2}} \] ### Final Solution The final solution of the differential equation is: \[ y = \frac{1}{1 + K\sqrt{\frac{1}{1 - x^2}}} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise Problem Set (3) (MULTIPLE CHOICE QUESTIONS) |11 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise Self Assessment Test |11 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise Problem Set (2) (TRUE AND FALSE) |9 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Self Assessment Test |19 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise MESCELLANEOUS EXERCISE|3 Videos

Similar Questions

Explore conceptually related problems

(1-x^(2))(dy)/(dx)-xy=1

(1-x^(2))(dy)/(dx)+xy=ax

Knowledge Check

  • The Solution of the equation (1+x^(2)) (dy)/(dx)+2xy -4x^(2)=0

    A
    `y(1+x^(2))=x^(3)+c`
    B
    `y(1+x^(2))=2x+c`
    C
    `y(1+x^(2))=(4)/(3)x^(3)+c`
    D
    None
  • Similar Questions

    Explore conceptually related problems

    e^(-x^(2))(dy)/(dx)=2xy

    (x^(2)+1)(dy)/(dx)=xy

    (1-x^(2))(dy)/(dx)-xy=x^(2)

    Solution of the diff. eqn. (1+x) (dy)/(dx) -xy =1-x is ……….

    (1-x^(2))(dy)/(dx)-2xy=x-x^(3)

    Solution of the diff. eqn. (dy)/(dx) +(1)/(x) =(e^(y))/(x^(2)) is ………..

    Solution of diff. eqn. (dy)/(dx) +x sin 2y = x^(3) cos^(2)y is ………….