Home
Class 12
MATHS
The statement p rarr (q rarr p) is equiv...

The statement `p rarr (q rarr p)` is equivalent to

A

`p rarr (p vv q)`

B

`p rarr (p ^^ q)`

C

`p rarr (p ltrarr q)`

D

`p rarr (p rarr q)`

Text Solution

AI Generated Solution

The correct Answer is:
To determine the equivalence of the statement \( p \rightarrow (q \rightarrow p) \), we will follow a systematic approach using logical equivalences. ### Step-by-Step Solution: 1. **Understand the Implication**: The statement \( p \rightarrow (q \rightarrow p) \) can be rewritten using the definition of implication. Recall that \( A \rightarrow B \) is equivalent to \( \neg A \lor B \). Thus, we can rewrite the statement as: \[ p \rightarrow (q \rightarrow p) \equiv \neg p \lor (q \rightarrow p) \] 2. **Rewrite the Inner Implication**: Now, we need to rewrite \( q \rightarrow p \) using the same definition: \[ q \rightarrow p \equiv \neg q \lor p \] Substituting this back into our expression gives: \[ \neg p \lor (q \rightarrow p) \equiv \neg p \lor (\neg q \lor p) \] 3. **Associative Law of Disjunction**: We can apply the associative law of disjunction, which allows us to regroup the terms: \[ \neg p \lor (\neg q \lor p) \equiv (\neg p \lor p) \lor \neg q \] 4. **Apply the Law of Excluded Middle**: The expression \( \neg p \lor p \) is always true (this is known as the law of excluded middle): \[ \neg p \lor p \equiv \text{True} \] Therefore, we can simplify our expression to: \[ \text{True} \lor \neg q \] 5. **Final Simplification**: Since the disjunction of any statement with true is always true, we have: \[ \text{True} \lor \neg q \equiv \text{True} \] Thus, we conclude that: \[ p \rightarrow (q \rightarrow p) \equiv \text{True} \] ### Conclusion: The statement \( p \rightarrow (q \rightarrow p) \) is equivalent to True.
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MATHEMATICAL REASONING

    ML KHANNA|Exercise PROBLEM SET (2) ASSERTION/REASON|3 Videos
  • MATHEMATICAL REASONING

    ML KHANNA|Exercise PROBLEM SET (1)(TRUE OR FALSE)|21 Videos
  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Miscellaneous exercise|3 Videos
  • MATRICES

    ML KHANNA|Exercise COMPREHENSION|3 Videos

Similar Questions

Explore conceptually related problems

The statement (p rarr q)vv(q rarr p) is

The statement sim(sim p rarr q) is equivalent to (A)p vv sim q(B)sim p^^q(C)sim p^^sim q(D)sim p vv q

Knowledge Check

  • The statement p rarr (q vee r ) is not equivalent to

    A
    `(p rarr q ) vee ( p rarr r ) `
    B
    `p ^^ (~q) rarr r`
    C
    `p ^^ (~ r) rarr ` q
    D
    `p ^^ q rarr ( p ^^ r) vee ( q ^^ r)`
  • If p and q are logical statements, then p rArr (~q rArr p) is equivalent to

    A
    `prArr(prArrq)`
    B
    `p rArr (p^^q)`
    C
    `prArr (p^^q)`
    D
    `p rArr (phArr q)`
  • Let p.q and r be three statements, then (~prarrq)rarr r is equivalent to

    A
    `(~pvvr)^^(qvvr)`
    B
    `(prarr r)^^(q rarr r)`
    C
    `(~p ^^ r)vv(q vv r)`
    D
    `(prarr q)rarr r`
  • Similar Questions

    Explore conceptually related problems

    The converse of p rarr (q rarr r) is

    If p and q are logical statements, then (~p)rarr(prarrq) is equivalent to

    The statement p to(q to p) is equivalent to

    Let p and q be two statements, then ~ p rarr q ^^ (~q) is equivalent to

    If p and q are logical statements, then (p^^q)rarr(prarrq) is equivalent to