Home
Class 12
MATHS
Evaluate the scalar product (3veca-5vecb...

Evaluate the scalar product `(3veca-5vecb).(2veca+7vecb)`.

Text Solution

Verified by Experts

The correct Answer is:
`6|veca|^(2)+11veca.b-35|vecb|^(2)`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • VECTOR ALGEBRA

    BETTER CHOICE PUBLICATION|Exercise ASSIGNMENT MOST IMPORTANT QUESTIONS FOR PRACTICE (SECTION IV)|8 Videos
  • VECTOR ALGEBRA

    BETTER CHOICE PUBLICATION|Exercise ASSIGNMENT MOST IMPORTANT QUESTIONS FOR PRACTICE (SECTION V)|22 Videos
  • VECTOR ALGEBRA

    BETTER CHOICE PUBLICATION|Exercise ASSIGNMENT MOST IMPORTANT QUESTIONS FOR PRACTICE (SECTION II) SHORT ANSWER TYPE QUESTIONS |29 Videos
  • THREE DIMENSIONAL GEOMETRY

    BETTER CHOICE PUBLICATION|Exercise PREVIOUS YEARS BOARD.S QUESTION FOR PRACTICE |60 Videos

Similar Questions

Explore conceptually related problems

If two vectors veca and vecb are such that : |veca|=2,|vecb|=1 and veca*vecb=1 , then find the value of (3veca-5vecb)*(2veca+7vecb) .

If two vectors veca and vecb are such that |\veca|=3,|\vecb|=2 and veca.vecb=4 then find the value of (3veca-4vecb).(2veca+5vecb) .

If veca=2hati+sqrt3hatj+3hatk and vecb=3hati+2hatj-2sqrt3hatk , then : evaluate (3veca-5vecb)xx(2veca-vecb) .

If veca=5hati-hatj+7hatk and vecb=hati-hatj-lambdahatk , then find the value of 'lambda' for which (veca+vecb) and (veca-vecb) are orthognal.

Three vectors veca,vecb,vecc satisfy the condition veca + vecb + vecc=0 . Evaluate the quantity mu =veca.vecb + vecb.vecc +vecc.veca If |veca|=1, |vecb|=4 and |vecc|=2

The scalar product of two given vectors veca and vecb having angle 'theta' between them is defind as veca*vecb=........ .

If veca and vecb are any two unit vectors, then find the greatest postive integer in the range of (3|veca + vecb|)/2+2|veca-vecb|

Show that the three points veca-2vecb+3vecc, 2veca+3vecb-4vecc and -7vecb+10vecc are collinear.

If veca=5hati-hatj-3hatk and vecb=hati+3hatj-5hatk , then show that the vectors (veca+vecb) and (veca-vecb) are perpendicular.

If veca and vecb are two vectors , then prove that (vecaxxvecb)^(2)=|{:(veca.veca" ",veca.vecb),(vecb.veca" ",vecb.vecb):}|